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Estimating Risk for Future Intracranial, Fully
Implanted, Modular Neuroprosthetic Systems:
A Systematic Review of Hardware
Complications in Clinical Deep Brain
Stimulation and Experimental Human
Intracortical Arrays
Autumn J. Bullard, MSE* ; Brianna C. Hutchison*; Jiseon Lee, BS*;
Cynthia A. Chestek, PhD*†; Parag G. Patil, MD, PhD*‡

Objective: A new age of neuromodulation is emerging: one of restorative neuroengineering and neuroprosthetics. As novel
device systems move toward regulatory evaluation and clinical trials, a critical need arises for evidence-based identification of
potential sources of hardware-related complications to assist in clinical trial design and mitigation of potential risk.

Materials and Methods: The objective of this systematic review is to provide a detailed safety analysis for future intracranial,
fully implanted, modular neuroprosthetic systems. To achieve this aim, we conducted an evidence-based analysis of hardware
complications for the most established clinical intracranial modular system, deep brain stimulation (DBS), as well as the most
widely used intracranial human experimental system, the silicon-based (Utah) array.

Results: Of 2328 publications identified, 240 articles met the inclusion criteria and were reviewed for DBS hardware complica-
tions. The most reported adverse events were infection (4.57%), internal pulse generator malfunction (3.25%), hemorrhage
(2.86%), lead migration (2.58%), lead fracture (2.56%), skin erosion (2.22%), and extension cable malfunction (1.63%). Of
433 publications identified, 76 articles met the inclusion criteria and were reviewed for Utah array complications. Of 48 human
subjects implanted with the Utah array, 18 have chronic implants. Few specific complications are described in the literature;
hence, implant duration served as a lower bound for complication-free operation. The longest reported duration of a person
with a Utah array implant is 1975 days (~5.4 years).

Conclusions: Through systematic review of the clinical and human-trial literature, our study provides the most comprehensive
safety review to date of DBS hardware and human neuroprosthetic research using the Utah array. The evidence-based analysis
serves as an important reference for investigators seeking to identify hardware-related safety data, a necessity to meet regula-
tory requirements and to design clinical trials for future intracranial, fully implanted, modular neuroprosthetic systems.
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INTRODUCTION

A new age of neuromodulation is emerging. Established open-loop
neuromodulation systems treat a broad range of neurologic network
disorders, including Parkinson disease, tremor, dystonia, obsessive–
compulsive disorder, epilepsy, and pain. A newly approved closed-
loop device provides responsive neural control of epilepsy. A growing
body of the literature suggests promise for neuromodulation to treat
intractable depression and enhance recovery from spinal-cord injury.
Experimental neuroprosthetic systems incorporate intracortical
silicon-based arrays and networked sensing and stimulation modules
to allow real-time neuroprosthetic control. As technology advances
and the number of modular systems grow, a need arises to anticipate
the potential safety features and shortcomings of future neu-
roprosthetic systems. Such analysis, based upon all available
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evidence, may be of value in satisfying prerequisites of regulatory
requirements, formulating clinical-trial design and oversight, and fully
informing patient consent.
The primary aim of this systematic review is to provide a detailed

safety analysis to inform future intracranial, fully implanted, and
modular neuroprosthetic systems. To accomplish this aim, we
examine the safety profiles of the most widespread intracranial
clinical system, deep brain stimulation (DBS), as well as the most
widespread intracranial human experimental system, the silicon-
based (Utah) array, to identify safety considerations inherent to
emerging modular neuroprosthetic systems and to derive the most
reliable safety estimates possible for likely future neuroprosthetic
systems. Our comprehensive and systematic review of the safety
literature for DBS and human trials of the Utah array provides
greater detail and scope than many earlier reviews by
encompassing all indications for DBS and focusing upon the struc-
tural components of the DBS system. Detailed safety evaluation of
experimental systems, such as the Utah array, has been difficult
due to the dearth of complications reported in the literature, which
focuses upon scientific and technological advances. However, indi-
rect indicators exist. For example, we can estimate the duration of
complication-free Utah array operation from reported periods of
implant longevity in the literature. As a result, in addition to evalu-
ating the potential safety of future modular intracranial device sys-
tems, this review also achieves an additional secondary goal of

providing the most comprehensive safety and longevity review to
date of human neuroprosthetic research using the Utah array.
Currently, U.S. Food and Drug Administration (FDA)-approved

chronically implanted intracranial neuromodulation systems include
DBS and responsive neurostimulation (RNS). DBS has been used for
decades to treat movement disorders (1–3) and, more recently, to
treat neuropsychiatric disorders and epilepsy (4–6). DBS systems are
modular, consisting of a multicontact lead, an internal pulse genera-
tor (IPG), and an extension cable. The multicontact lead is a depth
electrode, typically 28 or 40 cm long, inserted into an intracranial tar-
get structure through a burr hole in the skull. The lead is secured at
the skull entry point via a burr hole cover. The IPG is typically placed
subcutaneously in the chest region. The extension cable connects
the two via subcutaneous tunneling along the neck. As a related
example, however, relatively new and not as widely used, the RNS
system for epilepsy (NeuroPace, Inc., Mountain View, CA) is similarly
modular, consisting of cortical strip or depth leads connected to a
cranially implantable neurostimulator unit (7).
To monitor and record brain electrical activity for neu-

roprosthetic applications, the commercially available Utah array
(NeuroPort, Blackrock Microsystems, Inc., Salt Lake, UT) is FDA
approved for human implantation up to 30 days, or longer with
an investigational device exemption. The NeuroPort Array consists
of a 4.0 mm × 4.0 mm silicon-based microelectrode (Utah) array
with 96 electrodes, extending 1.0–1.5 mm, and a wire bundle
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Figure 1. Intracranial neuroprosthetic systems. a. An overview of the standard brain machine interfaces set up. An electrode is implanted in the brain and percu-
taneous connections are made between the patient and a series of computers. This particular example is of brain-controlled functional electrical stimulation (FES)
(252). b. An example of a potential future brain–machine interface set up using a modular network. An electrode is implanted in the brain and connected to an
implantable module for processing instead of a series of computers. This portrays the potential for a fully implantable brain-controlled FES system using the
networked neural prosthesis. [Color figure can be viewed at wileyonlinelibrary.com]
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connecting the array to a pedestal (Fig. 1). The pedestal pene-
trates the skin to provide electrical connectivity. A cable carries
signals from the pedestal to front-end amplifiers and, ultimately,
to a computer-based signal acquisition system for recording and
decoding (8,9). Currently, the major limitation of the NeuroPort
system is that tethering the pedestal to external hardware
impedes mobility, constraining array use to laboratory settings. In
addition, the transcutaneous pedestal violates the barrier integrity
of the skin, potentially raising the risk of infection. Any clinically
adopted neuroprosthetic system will require the Utah array to be
connected to a fully implanted modular actuator system with the
ability to record and respond to stimuli, similar to closed-loop
DBS or RNS.
An example of such a system is the networked neural prosthesis

(NNP). The NNP is a fully implantable, modular functional electrical
stimulation (FES) system, which in conjunction with implanted Utah
arrays, could form a fully implanted future neuroprosthetic system. The
current NNP consists of multiple interconnected modules each with
their own functionality responsible for recording myoelectric activity,
providing intramuscular stimulation, and power. Combinations of
these modules can be distributed around the body to assist in a variety
of functions lost by individuals due to spinal cord injury (10,11). The
current-version NNP only records residual myoelectric activity, but it
may be possible to add a neural recording module to record directly
from the brain and facilitate cortical-controlled FES. Hence, a combined
Utah Array-NNP system becomes a useful exemplar system for safety
analysis. An overview of the exemplar, prototypical fully implantable,
modular, neuromodulation system is shown in Fig. 1b.
To understand potential hardware complications for such

emerging systems, we have performed a systematic review
focused on the hardware mechanisms of DBS failure as well as
longevity or safety of the Utah array in humans. DBS is a well-
established, fully implantable system that is similarly modular to
our exemplar prototypical neuroprosthetic system. However, the
electrode lead used in DBS is not directly comparable. Hence,

major safety concerns and potential failure modes of the Utah
Array-NNP system are hypothesized to be similar to those docu-
mented in both DBS systems and the Utah Array.

MATERIALS AND METHODS
Search Strategy
A systematic review was conducted to identify the relevant lit-

erature on hardware complications of DBS, by searching the elec-
tronic data bases: PubMed, Embase, ClincalTrials.gov, Scopus, and
Cochrane’s Library. The search was broken down into two con-
cepts; device and risks. A comprehensive list of keywords was
generated to capture all synonyms of DBS and risks, including
both general terms and potential risks specific to DBS. This list
was then optimized by removing additional keywords that
resulted in search results captured by the larger umbrella of
another keyword. All device-related keywords were grouped
together by an OR operator and the same was done for the risk
keywords. The device and risk groups were then merged with the
AND operator to identify all articles with mention of DBS and
some form of risk or complication in the title or abstract (Table 1).
A similar approach was taken to identify all articles including the

use of the Utah array in humans in the title or abstract. The search
was again separated into two concepts: device and patient, where
a comprehensive list of all synonyms describing Utah arrays and
humans was generated. Each separate concept group was com-
bined through the OR operator and then together with the AND
operator. In addition, a list of known principal investigators who
have conducted experiments with humans implanted with Utah
arrays were identified. This was incorporated at the end with the
AND operator to help refine the search results (Table 2).

Study Selection
The search results were critiqued through a two-reviewer pro-

cess. Each reviewer independently read the title and abstract of
articles to screen for relevance. They were classified as either pos-
sibly relevant or clearly irrelevant. Articles deemed as clearly irrel-
evant by both reviewers were immediately excluded, and articles
classified as possibly relevant by both reviewers were immediately
included. The articles where the reviewers disagreed were
reviewed again, discussed, and then resolved.
Predefined inclusion and exclusion criteria were created to fur-

ther refine our search results to include only the papers within
the scope of the review, shown in Fig. 2. Selected articles were
required to have clinical data from a primary study, report on
bleeding, infection, or hardware complications related to DBS,
and include a quantification of risk. Articles not reporting data on
hardware complications, and articles reporting data solely on revi-
sion procedures were excluded, as well as case studies, review
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Table 1. Keywords and Search Structure for Hardware Complications in
DBS.

DBS synonyms Risk synonyms

Deep brain stimulation,
thalamic stimulation

Hematoma, bleed*, “short circuit,” fracture,
breakage, migration, infection, erosion,
revision, risk, safety, adverse event*,
“adverse effects,” complication*,
hardware failure

[DBS OR DBS synonym…] AND [risk OR risk synonym…].
* symbol at the end of a word to include other terms that begin with
the root word (i.e., -ing, -s).

Table 2. Keywords and Search Structure for Utah Arrays in Humans.

Utah array synonyms Human synonyms Senior authors

96 channel microelectrode array*, 96 channels
electrode array*, microelectrode array*,
intracortical microelectrode array*, intracortical
brain computerinterface*, Neuroport array*

Human, subject*, patient*, tetraplegic*,
quadriplegic*, person, people

Donoghue, Hochberg, Kirsh, Henderson, Shenoy,
Greger, Normann, House, Cash, Jang,
Zaghloul, Salas, Andersen, Schwartz, Rezai,
Collinger, Scheon, Truccolo

[Utah array OR Utah array synonym…] AND [human OR human synonyms…] AND [senior author OR senior author…]. * symbol at the end of a word to
include other terms that begin with the root word (i.e., -ing, -s).
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articles, and editorial letters. Only full-length articles available in
English or easily translatable that met all criteria were eligible for
inclusion. Two reviewers (A.B. and J.L.) independently read the
full-length articles and assessed against the inclusion criteria. Arti-
cles that met all criteria according to both reviewers were
included in this review. Articles that both reviewers agreed did
not meet one or more of the criteria were excluded. The
remaining articles where the reviewers disagreed were reviewed
again, discussed, and then resolved.

Data Extraction
To avoid extraction errors, two reviewers independently

extracted data from the eligible articles and any discrepancies
were discussed and resolved. Infection, hemorrhage, skin erosion,
and hardware failures related to malfunctions of the extension
cable and IPG, and fracture or migration of the DBS electrode
were the primary complications focused on in this review. For
each eligible article the following data were extracted about the
adverse event: incidence rate, location, the time of occurrence
postinitial surgery, if additional surgery was required, and if it
resulted in a total explant of the system. Because there are rela-
tively few centers hosting these clinical trials, publications often
have studies with overlapping patients and multiple complica-
tions occurring in the same patient. Articles with overlapping
patients were identified and these patients were only counted
once. Per patient data were extracted for each complication,
therefore if one patient experienced more than one complication
(i.e., infection and hemorrhage) both were accounted for. How-
ever, we did not use multiple occurrences of the same complica-
tion in one patient (i.e., reoccurring infections).

RESULTS
DBS Search Results and Study Characteristics
Our initial data base search yielded 2328 DBS publications that

contained our keywords and MeSH terms in either the title or
abstract. After screening titles and abstracts, 479 potentially rele-
vant articles were identified, and the full text was assessed against
the inclusion criteria. Finally, 240 articles were chosen to be
included in this meta-analysis (12–249) (Fig. 2). The remaining
239 articles were excluded for the following reasons: not DBS or
related (N = 47), no quantification of risk (N = 15), secondary revi-
sion procedures (N = 16), case studies, review articles, or editorial
letters (N = 145), not published in English (N = 5), full-length arti-
cle unavailable (N = 21). A total of 34,089 patients across articles
were included in this analysis. Notably, only seven hardware-
related deaths occurred within these patients. The per patient
incidence rates of all complications and subgroups of their loca-
tions are reported in Table 3. Unfortunately, due to the lack of a
comprehensive or standardized reporting system for complica-
tions there is missing information within the literature. All papers
that reported complications did not also report details on the
location. In addition, complications experienced at multiple loca-
tions per patient have been accounted for. The results presented
in Table 3 are a reflection of thus mentioned.

Hemorrhage
Bleeding is always a major concern when implanting electrodes

into the brain. Hemorrhage during and after surgery can lead to
neurologic damage and even death in severe cases. Of all the arti-
cles included in the study, 133 consisting of 19,389 patients
reported on hemorrhage. The overall incidence rate was 2.86%.
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Figure 2. Flow diagram of the study selection for deep brain stimulation hardware complications based on inclusion and exclusion criteria. [Color figure can be
viewed at wileyonlinelibrary.com]
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Out of all the papers in the literature that reported information
on the location of hemorrhages, 86.9% of those were intracerebral
hemorrhages (ICH), the most common during the duration of the
implanted system. Although hemorrhage is most likely to occur in
the brain for these procedures, it also occurred in other areas
throughout the body as well: at the site of the IPG (8.13%) and
along the extension cable (1.62%). When a bleed occurs, it is usu-
ally reported to happen intraoperatively or within a few days of
the surgery. Bleeding should always be taken seriously, however
the risk posed by the reported hemorrhage ranged in severity
and the action taken to resolve it. Some hemorrhages resolve on
their own without any external intervention, while others are
more serious and may require additional surgeries or other proce-
dures. For the purpose of this review, any adverse events that
required an additional surgery were deemed as serious adverse
events. In serious cases, the device is normally explanted. Usually
bleeds that occur outside of the brain can be resolved and then
hardware can be re-implanted. In all the studies, there were only
six reported deaths due to ICH (0.02%).

Infection
Second to bleeding, infection is often considered the next most

dangerous adverse event to be cautious of in any surgical procedure,
especially when there are foreign objects introduced inside the
body, particularly the brain. With future modular systems expected
to incorporate multiple implantable devices around the body, this is
of major concern. There were 174 articles consisting of 27,072
patients that reported data on infection. It was the most frequently
occurring adverse event, with an incidence rate 3.79% and was the
main reason for ultimate device explanation. This is on par with
other implantable devices such as the heart pacemaker. According
to a systematic review by Persson et al., infections of cardiac
implanted electrical devices range from 0.2 to 3.7% (250). However,
this incidence rate varies largely across studies making the true inci-
dence rate hard to establish due to the lack of standard methods for
reporting incidences. Additionally, there was only one reported
death related to an untreated infection. The infections observed var-
ied widely in their location, time of incidence relative to the initial
surgery, and severity. Of the 104 papers that reported the location of
where infections occurred, 44.2% were located at the site of the IPG,

followed by the scalp or burr hole (17.8%), the connector and exten-
sion cable (13.6%), and in the brain along the electrode lead (11.1%).
Of the 49 studies who reported time, infections are observed within
the first 30 days of surgery (10.2%); however, it can also occur
months thereafter. Most cases of infections in the brain were
reported early, within days, whereas infections that occurred around
hardware outside of the brain took longer to appear. The majority of
the reported infections were classified as severe, meaning they
resulted in the patient having additional surgery. However, although
additional surgery was required, in 35.9% of cases, the infection was
resolved and the hardware was ultimately re-implanted allowing
DBS therapy to continue. Depending on the location of the infection
only a subset of the system would be explanted and re-implanted. It
was rare that the entire system had to be explanted and then re-
implanted. However, if the infection was extremely severe and wide-
spread the entire system would be permanently explanted (20.7%).
This was typically seen in instances of infection that had tracked
along the DBS electrode.

Skin Erosion
Skin erosion is defined here as any place where there was a

breakage of the skin due to implanted hardware nearby. Erosion
of the skin is most commonly seen over the IPG and on the scalp
at the site of the burr hole or the connector where the extension
cable and electrode meet. This was reported in a total of 2.46% of
cases and was very commonly associated with infection. In 62.6%
of cases where skin erosion was reported there was also a case of
infection reported near the site of erosion. An additional surgery
or procedure was required in 25% of cases with skin erosion. Typi-
cally, wound debridement or surgical closure was used to repair
skin erosion, however some instances required revisions and re-
implantation of hardware. The more severe cases stemmed from
erosion around the burr hole or the connector site and, where the
electrode lead or extension cable was replaced. There were only
18 cases of skin erosion (9%) that led to the permanent explant
of the entire system.

Other Hardware Failures
In addition to the previously mentioned hardware failures,

there were also malfunctions of the extension cable and IPG, and
fracture or migration of the DBS electrode. This includes most of
the complications due to DBS hardware that are potentially rele-
vant to future chronic tethered devices. Overall, IPG malfunction
occurred 2.33% of the time, extension cable malfunction occurred
1.95% of the time, lead fracture occurred 2.53% of the time, and
lead migration occurred 3.49% of the time. These are typically not
dangerous in and of themselves, though in a single case, a patient
was electrically shocked due to the malfunction of the IPG (123).
In most cases, however, these are complications that usually
require additional routine surgeries, which do have their own
associated risks. In 22.6% of reported cases (including the electri-
cal shock incident), they were able to revise and fix. In only two
cases was a complete explantation necessary.

Utah Array Search Results and Study Characteristics
Our initial search identified 433 articles, which resulted in

76 articles after screening where humans had been implanted
with the Utah array (Fig. 3). The Utah array, a 96-channel micro-
electrode array (Blackrock Microsystems), has been implanted
intracortically in a total of 48 subjects as of September 2018. This
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Table 3. DBS Hardware-Related Adverse Events.

Complication Incidence (%) No. of patients reported

Infection 3.79 1028 (27,072)
IPG 44.2 265 (599)
Scalp/burr hole 17.8 107 (599)
Extension cable 13.6 82 (599)
Lead 11.1 67 (599)
Lead migration 3.49 139 (3977)
Lead fracture or failure 2.53 208 (8214)
Hemorrhage 2.49 483 (19,389)
Intracerebral (ICH) 86.9 374 (430)
IPG 8.13 35 (430)
Extension cable 1.62 7 (430)
Skin erosion 2.46 206 (8347)
IPG malfunction 2.33 101 (4320)
Tethering of extension cable 1.95 103 (5279)
Total overall complication 7.68 2098 (27,299)
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consists of patients implanted for epilepsy and other
intraoperative opportunities where tissue would have been
ablated, and patients with paralysis. The demographic of Utah
array implants is dominated by acute cases, usually to study epi-
lepsy, anesthesia, or cognition, memory, or language. A smaller
subset of the cases is chronic implants, used to study brain
machine interfaces for motor control of prosthesis and stimulation
for sensory mapping. Of the 48 people implanted with the Utah
array, 30 were implanted for less than 30 days and 18 people
were implanted chronically for more than 30 days (8,9,251–295).
We have identified all the senior authors and the sites, to our
knowledge, involved in studies with human implants in Table 4.
The longest reported duration of a person with a Utah array

implant is at least 1975 days (~5.4 years), shown in Fig. 4 and
Table 5. S3, a participant in the BrainGate2 pilot clinical trial, was
first implanted November 30, 2005, and while it has not been
reported that her array has actually been explanted, it was docu-
mented that she completed her enrollment in the BrainGate2 clin-
ical trial (259). Of the chronic cases, there was only one report of
an explanted Utah array in the literature. Participant S1 at the Uni-
versity of Pittsburgh was implanted for 987 days and then
explanted due to skin retraction around the pedestals. However,
it was reported that there was no sign of infection. The only other
mention of the safety of the Utah array implant was with partici-
pant EGS at California Institute of Technology. They reported that
there was no device-related adverse events to occur throughout
their study (278,296). Table 5 shows the breakdown of chronic
patients across different studies and the lengths of reported
implantation. The end of the reported duration of the implant
does not mean that the Utah array has failed, however, just the
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Figure 3. Flow diagram of the study selection for Utah arrays based on inclusion and exclusion criteria. [Color figure can be viewed at wileyonlinelibrary.com]

Table 4. Human Utah Array Implantation Sites and Senior Author
Involvement.

Chronic/
acute

Site Senior
authors

No. of
implants

Chronic University of Pittsburgh Collinger JL 2
Schwartz AB
Gaunt RA

California Institute of Technology,
Rancho Los Amigos National
Rehabilitation Hospital (RLA)

Andersen RA 3

Brown University, Massachusetts
General Hospital

Donoghue JP 12
Hochberg LR

Stanford University Henderson JM
Shenoy KV

Case Western Reserve University Kirsch RF
Ajiboye AB

Ohio State University Rezai AR 1
Sharma G

Total Chronic Implants 18
Acute University of Utah Health

Sciences Center
House PA 2
Greger B
Normann RA 6

Columbia University
Medical Center

Schevon CA 6

Massachusetts General Hospital Cash SS 3
Truccolo W 7

National Institute of Health Zaghloul KA 6
Total Acute Implants 30

Total Human Utah Array Implants 48
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last reported published date for that participant. There have been
a reported 9254 of total published implant days.

DISCUSSION

The safety surrounding neuromodulation technology is a critical
question for both established and emerging systems. Hardware-
related complications can result in potential injury to the patient,

repeated surgical procedures, and reduced clinical efficacy. In this
comprehensive, systematic review, we found that DBS had an
incidence rate of 19.04% for total hardware-related complications.
The most common adverse events were infection, followed by
lead migration, lead fracture or failure, hemorrhage, skin erosion,
IPG malfunction, and malfunction of the extension cable. The
rates of complications reported here are similar to those found in
prior studies and other notable systematic reviews (290,297–301).
The most recent and closely related DBS review of hardware
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Figure 4. Length of chronic human implants reported in the literature across clinical study sites. [Color figure can be viewed at wileyonlinelibrary.com]

Table 5. Reported Duration of Chronic Human Implanted Utah Arrays.

Location Participant Implantation date Reported duration* Adverse events

University of Pittsburgh S1 Feb 10, 2012 987 S1 explanted due to skin retraction around the pedestals, no
sign of infectionS2 – 673

California Institute of Technology EGS – 630
NS – –
FG – 56
S1 – 90
S3 Nov 30, 2005 1975
A1 Feb 2006 239
T1 – 270

BrainGate2 T2 Jun 2011 474
T5 Aug 2016 70 T7 death unrelated to research
T6 Dec 7, 2012 837
T7 Jul 30, 2013 548
T8 Dec 1, 2014 928
T9 – –
T10 – 33
MN Jun 2004 300

Ohio State University S1 – 1144

*Reported duration is not equivalent to Utah array failure.
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complications by Jitkritsadakul et al., investigated the differences
in incidence rates across indications for DBS. They used this infor-
mation to identify patients more at risk based on their indication
in order to inform them prior to surgery (290). While we have sim-
ilar rates of complications, our review did not focus on specific
indications. As a result, our search structure consisted of different
keywords and more data bases. Therefore, we were able to
include many more papers in our analyses, which offered more
data points for a more comprehensive review. Another recent
review of DBS complications done by the Neurostimulation
Appropriateness Consensus Committee, developed recommenda-
tions to improve patient safety and reduce the risk of injury asso-
ciated with neuromodulation devices (297). This review focused
on DBS as a subset of many other neurostimulation therapies.
Although we experienced slightly higher incidence rates than
reported here, according to this review we are still within
accepted rates of invasive brain procedures. It is also unclear how
many patients were included in this review.
Using the information about DBS hardware complications, we

are able to infer potential safety challenges that future intracra-
nial, fully implanted and modular neuroprosthetic systems may
face and begin the discussion on how to plan for and mitigate
these risks when developing a clinical trial. We have identified the
following adverse events to be potentially most salient to emerg-
ing systems: hemorrhage, infections, skin erosions, and
malfunctions of the extension cable.

Hemorrhage
Based on this review, bleeding in the brain during or immedi-

ately after the surgery is the most critical adverse event that can
risk the safety of the patient. In the DBS cases reporting ICH, the
clot most often tracked along the lead and extended into the
brain. Bleeding was not typically seen on the surface of the brain.
The biggest difference between DBS and future neural implants is
the type of electrode used. Since the Utah array is currently the
only device used chronically in humans, and one of the arrays
most likely to be incorporated into future modular devices, we
will focus on this array. Although a DBS lead extends several cen-
timeters into the brain, the Utah array is much shallower, inserting
only 1.5 mm into the brain. Therefore, if most of the bleeds that
occur in DBS are not on the surface, it is likely that the DBS lead
is perturbing blood vessels deeper in the brain that the Utah array
would miss (302). It is possible that the incidence rate of ICH
experienced in DBS could be an overestimate of what we would
see in future intracranial, modular neuroprosthetic systems. In the
case of both DBS and the Utah array for future devices, additional
action can be taken to help possibly reduce the incidence rate.
Studies that experienced lower ICH rates attributed it to physi-
cians’ cautious and proper use of the equipment and insertion of
electrodes, avoiding major vasculature on the brains’ surface.
Imaging can also be performed postsurgery as a means of proac-
tive monitoring to detect any small or asymptomatic ICHs (303).
Although bleeds can be very serious, they are expected, and pro-
tocols have been established to manage them.

Infection
Infections pose the highest risk for terminal explantation of the

DBS entire system (20.7%). Reported infections were predomi-
nantly found at the site of the IPG, followed by the burr hole, and
then the extension cable. Although in DBS there is only one IPG,

in the case of the NNP and other future modular systems, there
will be many more “IPGs” and extension cables routed throughout
the body. This has the potential to increase the rate at which
infections arise and possibly affect their ability to spread through-
out the body. Infections in DBS are typically managed with antibi-
otics, or portions of the system may be explanted while
antibiotics is administered and then successfully re-implanted. Re-
implantation is the main treatment for infection in such systems.
While they are categorized as serious adverse events, they are
very common. Future modular systems may have the potential
for increased incidence of infection due to the rise in the amount
of modular devices that can be implanted in a single system.
However, while some infections may be inevitable, it is important
to note that this does not necessarily have to be a failure of the
system. As seen in DBS, revision procedures occur frequently
without ultimately ending the therapy. Understanding where the
infections are most likely to occur and a potential time frame in
which they occur more frequently relative to the initial surgery
allows for management protocols to be developed within a clini-
cal trial. Physicians can anticipate these complications and moni-
tor patients more closely in areas more predisposed to infection
as well as search for symptoms more deliberately time periods
where infections typically spike. While this may not necessarily
reduce the overall infections rate, being proactive may reduce the
rate at which infection leads to system explant or a more sever
complication. Studies have also been performed to investigate
different antibiotics and the administration of them at different
time points throughout the lifetime of the implant to reduce the
infection rate (304–306).

Skin Erosion
Skin erosion, while occurring less frequently, commonly occurs

with infection. When there is erosion or breakage of the skin the
area becomes susceptible and leads to infection of the area. Since
skin erosion was most likely to occur over the IPG, a modular sys-
tem with multiple IPGs, as proposed with the NNP and potential
future devices, may experience an increased incidence rate than
reported in DBS. Knowing this we can begin to investigate surgi-
cal procedures for the best placement of these IPGs or modular
devices throughout the body and how to implant them deeper as
to reduce the risk of erosion. Similar to infection, cases of skin
erosion are also categorized as serious, requiring a surgical revi-
sion. This may be treated with wound debridement but is most
likely to lead to explantation of a portion or the whole system.

Extension Cable Malfunctions
Although there was a low incidence rate of extension cable

malfunctions in comparison to the other adverse events in DBS,
this is vital information. The addition of a wire to connect the
Utah array to an implantable module is where most of the uncer-
tainty lies with the safety of future intracranial, modular devices.
Malfunctions of the extension cable usually involve Twiddler’s
syndrome or bowstringing, which can lead to fracture of the cable
or displacement of the electrode. One of the biggest risks with
future Utah array tethered devices is that tension on the exten-
sion cable has the potential to dislodge the implanted array. How-
ever, of all the reported extension cable malfunctions, none led to
the displacement of a DBS electrode, likely due to anchoring at
the burr hole. All complications were due to breakage of the
cable, which were then replaced. Most of the complications with
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the extension cable occur in the neck, however, with future Utah
array tethered devices the module directly connected to the Utah
array will be secured to the skull. This smaller device may
decrease the risk for potential electrode array dislodgement.

Utah Array Safety and Longevity
Utah arrays have been implanted in substantially fewer individ-

uals, for shorter duration, and the literature does not contain much
about the safety of these implants as compared to DBS, which has
a sufficiently large population to reveal rare safety events. Since
there has been no publication to date that explicitly discusses the
risks or adverse events that occur in chronic human implants, we
systematically reviewed all the published literature to address this
topic. We identified 48 individuals implanted with a Utah array and
determined the duration of implantation at the time of the study.
This represents a starting point for a safety dataset of all FDA moni-
tored studies. Acute studies are more common and have been the
dominant contributor to the population of subjects with Utah
arrays. Although long-term effects are not observed in these sub-
jects, observations from short-term studies help to estimate intra-
cerebral hemorrhage, although not explicitly mentioned or
discussed in any papers we reviewed. Infection typically prompts
explantation of the array, so array longevity provides a lower
bound on the period of time without serious infection or other
adverse event. The mean number of days of Utah array implanta-
tion across all participants was 578. This underestimates implant
time. With the exception of one paper, no study reported array
explantation. In the absence of complication, participants typically
remain implanted following the conclusion of the study.
Because DBS systems are clinically available and have been

implanted in many patients, incidence rates of DBS adverse events
serve as a risk profile benchmark for future Utah array modular sys-
tems. Understanding the potential risks and failure modes of a
device and how many people must be observed to witness such
risks could be useful information when designing a clinical trial. For
example, we conducted a power analysis to estimate the number
of patients implanted with the Utah array needed to see similar
incidence rates as DBS. We found that it would take a very large
amount of people within a clinical trial before we would begin to
see complications with similar incidence rates as DBS systems. By
contrast, if Utah array tethered devices introduced 5× the risk of
DBS we would be able to see it much earlier and with fewer people
(Table 6). Given the low incidence rate of infection in DBS, we
would not have expected to see any complications in cases with as
few as 18 chronically implanted Utah arrays. It is also notable that
these Utah arrays were all percutaneous and would likely have a
higher infection rate than a fully implanted system.
The large number of people needed to do a true safety study is far

off. However, few individuals are required to demonstrate the efficacy
of neuroprosthetic systems. Efficacy may therefore have to be

established before safety studies can begin. Early feasibility human tri-
als would be beneficial in not only moving the needle in technology
surrounding the future of implantable intracortical devices, but also
helping to increase the population of people with these devices for a
comprehensive understanding of safety over time.

Study Limitations
This review focused primarily on the Utah array, using the exis-

ting intracranial DBS system as a benchmark for safety data of
future implantable neuroprostheses systems that will employ the
Utah array for brain-machine interface (BMI) applications. How-
ever, reviews of other existing intracranial neuromodulation
devices such as the RNS system may add value as well. In addi-
tion, there is currently no standardized method for reporting
adverse events related to DBS hardware or Utah array safety, thus
this review is incomplete. There were some DBS articles that con-
tained data on hardware-related complications that were
excluded because either the information was too general
(i.e., grouping infections and skin erosions and other skin compli-
cations together) or the data were per electrode lead and not per
patient. Papers also generally lacked the time in which adverse
events took place. In addition, papers discussing human research
with the Utah array did not disclose any adverse events and some
lacked important details such as the implantation date. Due to
the lack of data reported in literature discussing human research
using the Utah array, we determined in order to continue to
establish a data base of safety data for future and emerging
neuromodulation technologies we need to be gathering detailed
information about the implantations during experiments such as
implant and explant dates, detailed per patient adverse events,
the time frame in which adverse events occurred, as well as the
responsive action. Access to a detailed data base of adverse
events involving intracranial, modular systems will not only influ-
ence the design of future devices, but also serve as a reliable ref-
erence for investigators seeking to successfully advance their
device through the regulatory process toward a clinical trial.
As a result of the poor structure and overall lack of reported

complications across the field, we focused on the hardware-
related complications that could provide the most data in order
to produce a reliable review and serve as a benchmark to infer
the most about future intracranial, modular devices. We identified
hemorrhage, infection, skin erosion, and other malfunctions; how-
ever, these are certainly not the only safety risks future devices
have the potential to face. Safety of future devices cannot be fully
assessed by looking at the incidence rate of these categories
alone, yet this is a quantifiable starting point.
When implanting electrodes in the brain there is always a risk

of neurologic damage or neurobehavioral effects experienced by
the patient. Neurobehaviroal effects reported with DBS are most
often linked to the stimulation, therefore not directly comparable
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Table 6. Example Power Analysis.

Complication Sample size needed to reject null Power (1-β) α

1.5× 2× 5×

Infection 602 167 15 0.80 0.05
Skin erosion 692 193 18 0.80 0.05
Hemorrhage 956 267 25 0.80 0.05
Extension cable malfunctions 1555 435 41 0.80 0.05
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to the Utah array, which would be used for recording. However,
these risks persist with the Utah array as well. Implanted Utah
arrays are known to result in reactive tissue responses including
inflammation, glial scarring, and neuronal death or migration near
the site of the electrode, seen in the histological data (307–312).
It is possible that this histological response could potentially result
in functional deficits, however, because current chronic studies
with these arrays include patients already with severe loss of
motor functions, we are unable to measure any unintended dam-
age to physiologic functions in these patients. There has been
very little research done to investigate the potential motor deficits
caused by the implantation of chronic intracortical electrodes in
motor cortex. In a study done by Goss-Varley et al., it was shown
that healthy rats implanted with chronic microelectrodes in the
motor cortex resulted in deficits effecting fine motor function
(313). Implanted animals performed the ladder task significantly
slower with an increased number of paw slips than the non-
implanted control animals. It was reported that while graphically
significant, visually watching the animals yielded less conclusive
results. Contrarily, many able-bodied rhesus macaques have been
implanted for research and shown no signs of any motor deficits.
This behavioral response has also been shown in studies investi-
gating neuronal death from moderate traumatic brain injury and
resection in rats and similarly in humans, where moderate motor
deficits recovered over time or were unnoticeable (314–316).
There are considerable complexities of the brain, therefore ulti-
mately, safety questions will be best addressed in a sufficiently
powered, prospective clinical trial. In the meantime, pilot studies
will continue to contribute valuable data points over time by
including implant and explant dates, the time frame of experi-
ments as well as any physiologic and neurobehavioral effects.

CONCLUSION

We identify and quantitatively summarize the hardware-related
complications of DBS that can be used to estimate potential safety
risks of future modular, implantable neuroprosthetic systems. In
addition, we collect longevity data for human Utah array implants.
The evidence-based analysis serves as an important benchmark for
investigators seeking safety data on intracranial, modular systems.
As new devices are developed this information can be used to iden-
tify and assess potential hardware failures in advance. These compli-
cations can ultimately compromise the safety of the patient,
therefore anticipating future risks allows physicians and engineers to
develop specific surgical and risk mitigation protocols within their
clinical trials. In addition, these safety data are essential to the FDA
and should be included to develop a strong portfolio to the meet
regulatory requirements and help progress toward clinical trials.
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