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Abstract
Objective. Conventional neural signal analysis methods assume that features of interest are linear,
time-invariant signals confined to well-delineated spectral bands. However, new evidence suggests
that neural signals exhibit important non-stationary characteristics with ill-defined spectral
distributions. These features pose a need for signal processing algorithms that can characterize
temporal and spectral features of non-linear time series. This study compares the effectiveness of
four algorithms in extracting neural information for use in decoding cortical signals: Fast Fourier
Transform bandpass filtering (FFT), principal spectral component analysis (PSCA), wavelet
analysis (WA), and empirical mode decomposition (EMD). Approach. Electrocorticographic
signals were recorded from the motor and sensory cortex of two epileptic patients performing
finger movements. Each signal processing algorithm was used to extract beta (10–30 Hz) and
gamma (66–114 Hz) band power to detect thumb movement and decode finger flexions,
respectively. Naïve-Bayes (NB), support vector machine (SVM), and linear discriminant analysis
(LDA) classifiers using each signal were validated using leave-one-out cross-validation.Main
results. Decoders using all four signal decompositions achieved above 90% average accuracy in
finger movement detection using beta power. When decoding individual finger flexion using
gamma, the PSCA NB classifiers achieved 78± 4% accuracy while FFT, WA, and EMD analysis
achieved accuracies of 73± 8%, 68± 7%, and 62± 3% respectively, with similar results using SVM
and LDA. Significance. These results illustrate the relative levels of useful information contributed
by each decomposition method in the case of finger movement decoding, which can inform the
development of effective neural decoding pipelines. Further analyses could compare performance
using more specific non-sinusoidal features, such as transients and phase-amplitude coupling.

1. Introduction

Conventional Fourier bandpass filtering uses determ-
inistic frequency bands to extract signal informa-
tion and assumes that neural signals can be repres-
ented as time-invariant sinusoids. However, recent
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studies suggest that neural oscillations possess broad-
band, power-law characteristics dispersed across
the frequency domain and exhibit physiologically
important non-stationary features [1, 2], including
non-sinusoidal waveforms in cortical beta [3, 4].

Signal-processing tools that can capture both the
spectral and temporal dynamics of neural signals may
improve analysis of neural waveforms. For example,
principal spectral component analysis (PSCA) uses
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singular value decomposition to capture spectral
components that exhibit maximum variance during
epochs of interest [5]. On the other hand, wavelet
analysis (WA) and empirical mode decomposition
(EMD) capture temporal variations in neural sig-
nals evoked by physiological activity. WA uses short-
time wavelike oscillations to extract the temporal
response [6], whereas EMD iteratively decomposes
temporal patterns in the neural signal [7]. These
three algorithms have the potential to capture spec-
tral variations and non-stationary features of neural
signals.

While previous works have individually eval-
uated the utility of these algorithms [8–10], this
study is the first to directly compare the perform-
ance of all four decompositions. This study attempts
to assess the additional information contributed by
these techniques by measuring the performance of
each technique within the context of finger decoding.
We applied fast fourier transform bandpass filtering
(FFT), PSCA,WA, and EMD to decode human ECoG
signals duringmovement. Beta power extracted using
each algorithm was used to train Naïve-Bayes (NB),
support vectormachine (SVM), and linear discrimin-
ant analysis (LDA) classifiers to detect thumb move-
ment. Similar classifiers were also used to decode fin-
ger flexions using gamma power extracted by each
algorithm. The performance of each classifier was
then compared to gain insights on the quality of sig-
nal extraction. Our results reveal the relative per-
formance of each approach in a direct compar-
ison, offering insights on the development of neural
decoding pipelines and warranting future studies that
compare extraction of specific non-sinusoidal fea-
tures, such as transient activity and phase-amplitude
coupling.

2. Methods

All human procedures were carried out in accordance
with protocols approved by the Institutional Review
Board at the University of Michigan. Both subjects
provided informed consent.

2.1. Handmovements
Two epileptic patients were asked to performmotions
on the hand contralateral to the implanted elec-
trodes by flexing fingers independently during eight-
second movement trials. Each finger was flexed eight
to twelve times in random order, with five seconds
of rest between each flexion. For this analysis, we
considered only the thumb, index, and little fingers.
Finger positions were recorded at 1000 Hz using a
DataGlove 5 Ultra (5DT) with a flex sensor on each
finger.

2.2. Human ECoG signals
Electrocorticographic signals were recorded from the
cortex of each patient, contralateral to the hand

Figure 1. Electrode positions for the two subjects. Signals
recorded from the black electrodes were used for analysis
based on significant elevation in gamma power during
finger flexion.

used to perform thumb and finger flexions. Signals
were sampled at 30 kHz using a Neuroport sig-
nal processor (Blackrock Microsystems). The sub-
jects had been implanted with clinical subdural ECoG
grids (figure 1) for epilepsy treatment as previously
described in [11]. Neural signals were subsampled to
10 kHz and common average referenced across each
ECoG grid. Movement was defined as the 1-second
period followingmovement onset, asmeasured by the
DataGlove. Rest was defined as a time period over
one second duringwhich nomovementwas recorded.
Three data sets were analyzed: one set of 27 trials from
Patient 1 (P1a), a second set of 33 trials from Patient 1
performed on a separate day (P1b), and 29 trials from
Patient 2 (P2).

2.3. Fast Fourier Transform bandpass filtering
(FFT)
Spectral analysis through FFT-based bandpass filter-
ing assumes that fluctuations in activity can be char-
acterized by sinusoids. Processing nonsinusoidal data
with FFT may reveal non-existent harmonics, mak-
ing it difficult to characterize cross-frequency coup-
ling in neural signals [12]. Regardless, the simplicity
of FFTmakes it an ideal choice formany neural signal
decoding tasks.

FFT of beta and gamma was performed using
8th order elliptic IIR bandpass filters with rectangu-
lar windows, implemented with MATLAB’s built-in
designfilt function. The filter conditions were tested
in previous studies and were shown to reliably decode
hand posture and tactile responses in primate motor
cortex [13]. Beta band cutoffs were 10 Hz and 30 Hz
[14]; gamma cutoffs were 66 Hz and 114 Hz, to avoid
60 Hz harmonics [15].

2.4. Principal spectral component analysis (PSCA)
Principal component analysis is an adaptive pro-
cessing algorithm that reduces the dimensionality of
a dataset into predefined variables, known as prin-
cipal components. PSCA is the application of this
algorithm to a signal’s power spectral density [5].
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Figure 2. Neural signal analysis scheme. (a) Multi-taper spectral analysis: finger flexion begins at t= 0, leading to a significant
elevation (p < 0.05, 1-sided permutation test, false discovery rate corrected) in the gamma band (66–144 Hz) and a suppression in
the beta band (10–30 Hz) (b) Gamma power burst following thumb flexion from a representative electrode, as decoded by each of
the four algorithms. (c) Spectral characteristics of beta. Note: wavelet power cannot be represented using classical power spectra.
(d) Spectral characteristics of gamma. FFT produces sharp cut-off bands in both cases, whereas the other three algorithms
produce more varied spectra.

Since this is a data-driven method, it can prove useful
for decomposing the spectral data of complex neural
signals. Previous work has used PSCA to accurately
detect finger movement from cortical signals [10].

Power spectra with 1024 frequency points up to
Nyquist frequency were computed using MATLAB’s
pwelch function and normalized across trials. Prin-
cipal component analysis was then applied to the
normalized power spectra to obtain principal com-
ponents and component scores. The first and second
principal components were assumed to represent beta
and gamma activity, respectively.

2.5. Wavelet analysis (WA)
Wavelet transforms provide temporally local-
ized frequency analysis that can overcome the
frequency-time resolution trade-offs exhibited by
the short-time Fourier transform [16]. We utilized
the widely-employed analytical Morlet wavelet [8] to
construct a whole-signal scalogram between 5Hz and
200 Hz with 1.95 Hz resolution. From this scalogram,
we then extracted beta (10–30 Hz) and gamma (66–
114 Hz) power by summing the squares of absolute
coefficients in each frequency band.

2.6. Empirical mode decomposition (EMD)
EMD is a data processing tool introduced to pro-
cess non-linear and non-stationary time series. The

algorithm, developed by Huang et al, reduces a com-
posite signal into a set of oscillatory time-series called
intrinsic mode functions (IMFs) by iteratively sub-
tracting the mean of the signal’s temporal envelope
[7]. Prior work on analyzing neural recordings have
identified significant non-sinusoidal characteristics,
so we hypothesize that EMD can effectively isolate
the characteristics by filtering the signal in a temporal
fashion. Previous work has shown the utility of EMD
inprocessing neural signals formany prediction tasks,
including estimation of anesthetic depth, classifica-
tion of epileptic seizures, and classification of finger
flexion [9, 17, 18].

EMD was implemented using publicly available
MATLAB code from Huang [19], with envelopes cal-
culated using standard not-a-knot spline interpola-
tion.We specified the algorithm to decompose neural
signals to 9 IMFs, as subsequent IMFs did not con-
tain any signal. EMD is an empirical approach, so
beta and gamma bands were assigned based on the
power spectral densities of each IMF. Based on spec-
tral characteristics, we chose the 5th IMF to represent
beta band and the 3rd IMF for gamma band for both
patients.

2.7. Finger flexion analysis
Processed ECoG data from each of the four
algorithms was used to train two sets of Naïve-Bayes
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Figure 3. Thumbmovement detection using beta. (a) Confusion matrices for Naïve-Bayes classifier results. Percentages above
matrices indicate classification accuracies. All algorithms could predict thumb movement onsets above random chance
(p < 10–3). Classification performance did not differ significantly between any of the four algorithms (p < 0.05, McNemar). (b)
Comparison of beta accuracies based on classification method (NB= Naïve-Bayes, LDA= linear discriminant analysis,
SVM= support vector machine). Classification performance is similar in all cases.

Figure 4. Finger flexion decoding using gamma. (a) Confusion matrices for Naïve-Bayes classifier results. Percentage values
above confusion matrices indicate classification accuracies. All algorithms could predict flexion above random chance (p < 0.01).
Accuracies of PSCA and FFT are significantly greater than EMD in case P1a and P1b (p < 0.05, McNemar test). (b) Comparison
of gamma accuracies based on classification method (NB= Naïve-Bayes, LDA= linear discriminant analysis, SVM= support
vector machine). The hierarchy of performance between the four decomposition algorithms is comparable across all three
classifier methods.

classifiers. Extracted log power of beta was used
to detect thumb movement. Extracted gamma was
used to predict finger flexions of the thumb, index,
and little finger, as beta power has been previously
shown to produce poor finger decoding perform-
ance [13]. Decoder performance was measured using
leave-one-out cross-validation. Analogous decoders
using SVMs and LDA were also implemented to test
for consistency across classifiers.

3. Results

A subset of electrodes exhibited gamma band eleva-
tion during finger movement and were selected for
analysis, as described in [13] (figure 1). Multi-taper
spectral analysis using time-frequency tapers (taper
dimension: 500 ms & 10 Hz) [20] shows gamma
band synchrony and beta band depression during fin-
ger movement in a subset of electrodes (figure 2(a)).
Gamma band elevation was significant (p < 0.05,

1-sided permutation test, false discovery rate cor-
rected). Robust modulation of gamma power was
observed on these electrodes during fingermovement
for all four algorithms (figure 2(b)). Each of the four
algorithms extracted different representations of beta
and gamma bands (figures 2(c) and (d)), with FFT
producing the sharpest cut-offs.

For all four signal processing methods, classific-
ation using beta band power achieved above-chance
detection of thumb movement across all datasets
(p < 10–3, binomial cumulative distribution test [21])
(figure 3). The McNemar test found no significant
difference in performance between any of the four
algorithms (p < 0.05).

In decoding finger flexions using gamma band
power, the classifier achieved above chance prediction
accuracies for all four algorithms (p < 0.01) (figure 4).
Averaging across all patient cases, the Naïve-Bayes
decoder using PSCA-estimated gamma achieved an
accuracy of 78%with a standard deviation of 4%. FFT
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(73 ± 8%), WA (68 ± 7%), and EMD (62 ± 3%)
achieved lower decoding accuracies. For case P1a and
P1b, the classification accuracies of PSCA and FFT
were significantly greater than that of EMD (p < 0.05,
McNemar test). Similar results were found when
using SVM (FFT: 69 ± 4%; PSCA: 81 ± 6%; WA:
63 ± 14%; EMD: 57 ± 2%) and LDA decoders (FFT:
70 ± 2%; PSCA: 79 ± 7%; WA: 62 ± 8%; EMD:
57± 5%).

4. Discussion

This study reveals notable differences between the
accuracies of human motor ECoG decoders using
signals extracted by the fast Fourier transform (FFT),
PSCA, WA, and EMD. While all algorithms classified
finger flexions with an above random chance using
extracted gamma, performance across algorithms
varied significantly. Performance of beta-driven
detection of thumb movement was similarly high
across all algorithms.

Amongst the gamma representations used for fin-
ger decoding, PSCA estimates produced the most
accurate classifications in nearly all cases. This find-
ing supports the claim that neurophysiological sig-
nals are distributed over a broadband spectral distri-
bution, rather than within clearly defined frequency
bands. The adaptive nature of PSCA allows for active
tuning of the processing pipeline for task-relevant sig-
nals, which could ensure reliable extraction of a wide
variety of non-sinusoidal components. Other stud-
ies have demonstrated similar success with PSCA-
extracted gamma in speech decoding [22, 23] and
identification of visual stimuli [24, 25].

Conversely, WA and especially EMD-extracted
gamma achieved markedly lower performance. Pre-
vious studies have shown utility in these algorithms’
ability to detect transients in neural signals [26–28].
However, these properties did not appear to have
contributed significant additional information for
extraction of gamma band power for motor decod-
ing. The low performance of EMD, in particular,
was notable in light of PSCA’s high performance
and similar power spectra. This result is likely due
to the algorithm’s tendency to behave as a series of
dyadic filter banks when decomposing signals with
flat power spectral densities [29], making it unsuit-
able for extraction of gamma band. As such, EMD
and PSCA likely extracted qualitatively distinct sig-
nals, despite the wide spectral distribution of gamma
observed with both algorithms. The findings here are
supported by previous work showing similar accur-
acy for EMD-driven finger flexion classification [9].
In this analysis, we did not observe any mixing of
spectral content in the resultant IMFs, precluding the
need for noise assisted versions of EMD [30]. How-
ever, more sophisticated forms of EMD such as mul-
tivariate EMD, which have demonstrated success in

predicting seizure onset [18], may warrant additional
investigation.

Surprisingly, FFT estimates of control signals
exhibited high performance, often on par with the
much more sophisticated PSCA approach. This may
be due, at least in part, to FFT’s long history of use
in neural signal processing, which has functionally
tuned conventional frequency cutoffs to physiolo-
gically relevant bands. The signal estimates from
EMD, in comparison, were derived in a function and
behavior-agnostic fashion, resulting in less-optimized
outputs.

In contrast to the varied performance exhibited
by each algorithm in gamma-driven decoders, clas-
sifiers using beta estimates from each decomposi-
tion seemed to perform equally well. This may be
due to differences in the respective natures of beta
and gamma oscillations. Although the causal rela-
tionship between recorded beta oscillations and beha-
vior is still unclear, the occurrence of beta synchrony
is known to signal specific states within themotor sys-
tem [31]. In contrast, power in the more widely dis-
tributed gamma band correlates strongly with spiking
activity and is thought to represent generalized neural
local activity [32], representing a less precisely defined
oscillatory phenomenon.

Since WA and EMD appear to provide accur-
ate estimates of beta, they may prove valuable for
examining temporal patterns of more spectrally
focused low-frequency oscillations, such as alpha and
beta. Calculations of phase-amplitude coupling and
phase-locking value, for example, benefit significantly
from EMD-derived signals over traditional bandpass
filtering [33]. Recent studies have even suggested that
some observed phase-amplitude coupling values may
arise spuriously from non-sinusoidal features in the
phase-carrier oscillation, a phenomena that may be
suitable for extraction by EMD [3, 34, 35].

It should be noted that our comparisons were
based on the performance of specific classifiers
trained on a small sample of electrodes. While the
simplicity of these models compared to other clas-
sifiers (K-nearest neighbors, neural networks, etc)
make them a good start for prototyping decoding
pipelines, the assumptions and characteristics of each
classifier may influence performance. Likewise, indi-
vidual variations in task-relevant neural signals may
contribute meaningful variations in decomposition
performance. Future studies involving larger data-
sets and comparisons of more sophisticated decoding
algorithms are warranted.

5. Conclusion

In summary, this study compared the effectiveness
of FFT, PSCA, WA, and EMD estimates of beta and
gamma by training finger movement decoders using
human cortical signals derived using each algorithm.
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We found that all four algorithms were equally accur-
ate for prediction of finger movements using beta.
In decoding finger flexions using gamma, PSCA
and FFT produced the highest performance, while
WA and EMD-extracted gamma resulted in lower
performance. These results can inform the develop-
ment of decoding pipelines in future studies that
require extraction of a specific quality from human
ECoG data.
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