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Abstract
Objective. Neural recording is important for a wide variety of clinical applications. Until 
recently, recording from the surface of the brain, even when using micro-electrocorticography 
(μECoG) arrays, was not thought to enable recording from individual neurons. Recent results 
suggest that when the surface electrode contact size is sufficiently small, it may be possible to 
record single neurons from the brain’s surface. In this study, we use computational techniques 
to investigate the ability of surface electrodes to record the activity of single neurons. 
Approach. The computational model included the rat head, μECoG electrode, two existing 
multi-compartmental neuron models, and a novel multi-compartmental neuron model derived 
from patch clamp experiments in layer 1 of the cortex. Main results. Using these models, we 
reproduced single neuron recordings from μECoG arrays, and elucidated their possible source. 
The model resembles the experimental data when spikes originate from layer 1 neurons that 
are less than 60 μm from the cortical surface. We further used the model to explore the design 
space for surface electrodes. Although this model does not include biological or thermal noise, 
the results indicate the electrode contact area should be 100 μm2 or smaller to maintain a 
detectable waveform amplitude. Furthermore, the model shows the width of lateral insulation 
could be reduced, which may reduce scar formation, while retaining 95% of signal amplitude. 
Significance. Overall, the model suggests single-unit surface recording is limited to neurons in 
layer 1 and further improvement in electrode design is needed.

Keywords: μECoG, electrocorticography, neural recording, brain–computer interfaces, 
computational model, computer simulation, microelectrodes
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1. Introduction

Neurological diseases can significantly decrease the quality 
and duration of life. Neural recording electrodes are utilized as 
diagnostic tools and in therapeutic devices for a wide variety 
of conditions. Macroelectrode recording applications, such as 
invasive monitoring for epilepsy [1, 2] and local field poten-
tial recordings obtained from electrodes used in deep brain 
stimulation [3], use large surface area electrodes (∼30 mm2 
to  ∼0.3 mm2) to record the activity of a large number of neu-
rons within the brain. Microelectrode recording applications 
use small surface area electrodes (∼1000 μm2 to  ∼10 μm2) 
that can record the activity of single neurons. Microelectrodes 
are required for high resolution brain-machine interfaces 
(BMI) which are devices that aim to restore motor, sensory, 
and/or cognitive function [4–6].

Penetrating electrodes arrays have been used for decades 
in BMI applications. Common devices include the Utah array 
and the Michigan probe [7–9]. These types of electrodes have 
high spatial resolution and can record the activity of individual 
neurons (single units). However, all penetrating electrodes 
have limitations which prevent their widespread use, such as 
damage to the blood brain barrier, scarring from the foreign 
body reaction, and the inability to record from neurons greater 
than  ∼100 μm from the electrode surface [10–14]. Recent 
advances in cellular-scale electrodes have mitigated some 
of these concerns [15, 16], but these novel arrays have lower 
channel counts and are not yet ready for clinical use.

Surface electrodes can address many of the limitations of 
penetrating electrodes. These electrodes are applied to the 
surface of the brain rather than being inserted into the brain. 
Thus, these surface electrodes do not disrupt the blood brain 
barrier. As a result, surface electrocorticography (ECoG) elec-
trodes avoid brain damage and potentially increase long-term 
viability. However, ECoG electrodes have their own limita-
tions. Because they present an impermeable solid surface to 
the brain, this may cause increased scarring over time [10, 17–
19]. The primary limitation of ECoG electrodes is an increased 
distance between the electrodes and the neurons of interest. 
This distance decreases the selectivity of conventional ECoG 
electrodes so that they are only able to record ensemble activity 
[1, 20]. The inability to selectively record from small popula-
tions of neurons is logical because neural signals quickly fall 
off as function of distance from the electrode [11, 21].

Recently, one novel micro-electrocorticography (μECoG) 
grid was reported to overcome some of these limita-
tions. Khodagholy et  al 2015 [22] designed a μECoG grid 
(NeuroGrid), with much smaller electrode sizes than previous 
devices (100 μm2), that was able to record signals at the brain 
surface that appear to be generated by single units in rats. Due 
to the clear advantages of surface recording, it is important to 
understand which type of neurons are being recorded, how 
deep these recordings extend, and the critical aspects of the 
electrode design that provide these unique capabilities.

The purpose of this study was to investigate these issues 
and the origin of the neural signals recorded with these 
μECoG surface microelectrodes using a computational mod-
eling approach. Therefore, we built a computational model 

of surface recording, adapting the methods of Moffitt and 
McIntyre 2005 [11]. To our knowledge, this is the first neural 
recording model capable of replicating single-unit recording 
from the surface of the brain. First, we used two existing multi-
compartmental cable models of pyramidal cells from layers 
3 and 5 [23, 24] and developed a novel multi-compartment 
model that matched patch clamp data from layer 1 cells. Next, 
we developed finite element models (FEM) of electrodes with 
the NeuroGrid geometry along with several variants. Finally, 
we used a reciprocal solution approach to estimate the extra-
cellular voltages that would be observed with recording elec-
trodes of various sizes. We believe this model will help to 
determine the origin of single-unit recordings from μECoG 
electrode grids as well as potential technological improve-
ments that can be made to optimize the recording fidelity.

2. Methods

2.1. Neuron models

In this study, we performed simulations for several different 
neuron models. We designed a novel closed-field layer 1 
neurogliaform interneuron model that was parameterized to 
match patch clamp data, as described in detail below. We also 
implemented open-field layer 3 and layer 5 pyramidal neuron 
models [23, 24]. In the final analysis, we simplified the layer 5 
pyramidal neuron so it could be scaled to different sizes. These 
models helped determine the absolute maximum recording 
depth for common types of neurons in varying layers of the 
brain and acted as possible sources for the single-unit signals 
reported in Khodagholy et al 2015 [22]. The geometries of all 
cell models are shown in figure 1.

To consider signals from layer 1 neurons, we built a com-
putational model of a layer 1 neurogliaform neuron of the neo-
cortex based on published layer 1 patch clamp currents [25]. 
A previous study obtained the morphology of the neuron [26], 
available at neuromorpho.org. We imported the morphology 
into the HOC format of the software package, NEURON, 
using the built-in import3D tool [27]. The model had an active 
somatic compartment and 45 passive dendritic compartments. 
We calculated the number of segments in each compartment 
(nseg) using the d-lambda rule [27]. We then tuned the model 
parameters to obtain biologically realistic properties. This 
tuning was done in two stages: we first turned the model’s 
passive properties. We tuned the model’s specific mem-
brane resistance (15.4 kΩ cm2) to match the time constants 
(15.4 ms) and input resistance (297MΩ) with experimental 
values [25]. Next, we tuned the model’s active properties to 
match the spike shape characteristics with that of the exper-
imental data. For this purpose, we inserted Hodgkin–Huxley 
type [28] voltage-gated sodium and delayed rectifier potas-
sium currents into the model’s somatic compartment. The 
transmembrane currents, illustrated in figure 2, are based on a 
previously-published study that included neurogliaform cells 
[29] (see the appendix for equations). We tuned the maximal 
channel conductance (gmax) values of voltage-gated sodium 
and potassium channels using a brute force search approach 
and feature based error functions [30, 31]. We then chose the 
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features: spike width, spike threshold, spike amplitude and 
after-hyperpolarization amplitude. By assuming parameter 
specific maximum values, we evaluated the error function at 
equidistant points in the parameter space [30]. The resulting 
model (Na gmax  =  2 S cm−2, K gmax  =  0.3 S cm−2) had a 
spike threshold of  −49.4 mV and a spike width of 0.805 ms 
closely replicating the spike shape of experimentally-meas-
ured neurogliaform neurons. The model’s spike amplitude 
was 44% larger than that of experimental data [25]. We per-
formed all simulations at 32 °C. To model the temperature 
dependence of the ionic currents, we employed a q10 value of 
3 to scale the gating time constants of channel currents. The 
model had a resting membrane potential of  −82.36 mV.

We also included well-established models of layers 3 and 
layer 5 open-field pyramidal cells [23, 24]. We only consid-
ered open-field pyramidal neurons because their long and 
thick apical dendrites can lead to significant spatial separation 
between sources or sinks and the corresponding return cur-
rents that produce significant ionic currents in the extracel-
lular space [32]. We reasoned these open-field neurons would 
produce spikes that would be most likely to appear in extracel-
lular recordings from electrodes at distant locations.

Finally, we created a simplified version of the layer 5 
pyramidal neuron from Mainen et al 1995 [23] to scale the 
neuron size with all other parameters held constant [23, 33]. 
This allowed us to explore potential difficulties when recording 
from small neurons with most surface and penetrating elec-
trodes. We kept the channel types, channel dynamics, and 
overall ion channel counts within each part of the cell con-
sistent with the Mainen model. However, we simplified the 
overall neuron geometry. The axon was shortened to a single 
myelinated 200-compartment section  with a length of 100 
μm and a diameter of 1 μm since the axon makes a small 
contribution to the extracellular action potential [34, 35]. The 
axon hillock compartments were kept the same with the diam-
eters increasing from 1 to 9 μm approaching the soma. For 
the soma, the cylindrical compartment was set to a diameter 
of 24 μm and height of 21 μm to match the neuron size used 
in the original layer 5 model [23, 36]. Finally, we consoli-
dated the elaborate dendritic arbor in Mainen et al 1995 [23] 
into a single thick dendrite with 222 segments, length of 1030 
μm, and a diameter of 12 μm. While the length of the apical 
dendrite compartment remained approximately the same, we 
increased the diameter so that the total surface area matched 
that of the original dendritic arbor (65 000 μm2) [34, 37]. In 

all regions of the cell, we calculated the channel density such 
that the overall density of ion channels in each section of the 
neuron remained the same as the original model from Mainen 
et  al 1995 [23]. When altering the neuron size, we linearly 
scaled the entire model geometry to match the soma diameter 
of the neuron in question.

We performed all simulations within the NEURON 7.2 
simulation environment. To generate action potentials in the 
layer 1, 3, and 5 pyramidal cell models, we injected current 
into the soma. To generate action potentials in the simplified 
pyramidal cell model, we injected a brief pulse of current 
into the axon hillock at the minimum current which would 
cause an action potential (pulse width  =  7 ms, pulse ampl-
itude  =  0.7 nA for a 24 μm diameter neuron). For each neuron 
model, we solved the time-dependent transmembrane currents 
in each compartment.

2.2. Volume conductor model

To evaluate the effects of electrode size, position, and insula-
tion, we created finite element models (FEM) of a rat brain 
and μECoG electrodes. Similarly to Moffitt and McIntyre, 
2005 [11] this model included rodent head dimensions with 
representations of the brain, cerebrospinal fluid (CSF), skull, 
and scalp as shown in table 1. We implemented an electro-
static model with the above dimensions in COMSOL 5.2a 
(Comsol Inc., Burlington Massachusetts). When the mesh 
spacing was reduced 2 fold, the mean squared error between 
the two solutions was 0.0107 μV. Thus, the mesh was deter-
mined stable. For computational simplicity, we flattened the 
top of the brain, forming a circle with a diameter of 1130 μm. 
Although μECoG electrodes traditionally sit on top of the pia, 
we assumed the pia to have a conductivity equal to the brain 
since the pia exerts a negligible difference on field potential 
distribution [38–40].

The microelectrodes within this model were based on 
the electrodes described in Khodagholy et al 2011 [41] and 
Khodagholy et  al 2015 [22]. The electrode consisted of a 
10 × 10 × 8 μm3 volume of gold surrounded by a 10 × 10 × 10 
μm3 cube of PEDOT:PSS backed by a 2 μm thick layer of par-
ylene-c insulation extending for 50 μm past the electrode on 
either side, meant to simulate full insulation coverage (figure 
3). For comparison a single, more accurate, representation 
of the electrode was created with 10 × 10 × 1.79 μm3 of a 

Figure 1. Structure of the NEURON models. (a) Layer 1 
neurogliaform interneuron [26] (b) Layer 3 pyramidal cell [24] (c) 
Layer 5 pyramidal cell [23, 24] (d) Scalable neuron model derived 
from layer 5 pyramidal neuron.

Table 1. Electrical and dimensional properties for finite element 
analysis. Electrical conductivities were attained from previous 
modeling studies [11, 39, 49, 64].

Domain
Conductivity 
(S m−1) Radius/Size (μm)

Brain (Grey matter) 0.333 8000
Cerebrospinal fluid 1.7857 8500
Skull 6.25 × 10−3 9000

Scalp 0.434 78 10 000
PEDOT:PSS 96 000 10 × 10 × 10 μm3

GOLD 4.56 × 107 10 × 10 × 8 μm3

Parylene 1.6667 × 10−15 2 μm (thickness)

J. Neural Eng. 15 (2018) 056007
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PEDOT:PSS/Ethylene Glycol mix on top of a 10 × 10 × 0.21 
μm3 solid gold electrode backed by a 150 × 150 × 2 μm3 par-
ylene-c substrate with parylene-c, 2 μm thick, surrounding the 
electrode laterally. A difference of less than 1% was observed 
between the two models. The electrode contact was placed at 
the top of the brain with the skull acting as the ground. The 
electrical conductivities for each material are listed in table 1. 
We also created variants of this electrode with different con-
tact sizes and width of lateral insulation.

To achieve a model solution, we applied the necessary 
load and boundary conditions. The load condition consisted 
of a unit current source (i.e. 1 A) placed at the recording elec-
trode [11, 39, 42]. The boundary conditions required that the 
voltage attenuated to zero at the skull. The electrostatic model 
was solved in COMSOL using a linear solver.

2.3. Waveform calculation

To estimate the neural spike waveforms recorded from a 
particular electrode and neuron, we used a reciprocal solu-
tion [11, 42] to couple the volume conductor FEM to the 
neuron models. Each compartment of a neuron model was 
represented as an independent current source (i.e. the time-
dependent transmembrane currents computed in NEURON) 
at the appropriate spatial location in the FEM. We then calcu-
lated the recorded waveform by summing the voltages gener-
ated at the electrode contact by each of the transmembrane 
currents of the individual neuron compartments. Briefly, the 
reciprocal solution involved placing a unit current source at 
the recording electrode and solving for the scalar potentials 
generated at each node in the FEM. By the theorem of reci-
procity, the voltage at a given node in the mesh could be inter-
preted as the voltage generated at the recording electrode for a 
unit current. Therefore, we calculated the contribution of each 
neural compartment to the recorded waveform using interpo-
lation of the voltages from the nearest nodes surrounding each 
neural compartment. See Moffitt and McIntyre, 2005 [11] and 
Lempka et al, 2011 [42] for additional details describing this 
reciprocal solution approach.

2.4. Cortical layer imaging

We performed immunohistochemistry to estimate the average 
diameter, surface area, and density of neural somata in layer 1 of 
mammalian cortex as well as the thickness of layer 1. We per-
formed all animal procedures in accordance with the institutional 
animal guidelines and approval of the University of Michigan 
IACUC. For histology, we perfused WT Long-Evans wild-type 
rats under anesthesia first with cold saline followed by 10% 
Neural Buffer Formalin (NBF, Millipore). We removed brains 
which were postfixed for 16 hours in fresh 10% NBF with gentle 
shaking at 4 °C. Next, we mounted sections in 2% agarose gel 
(ThermoFisher) in homemade 1X Phosphate Buffer Saline (PBS) 
and cut at 100 μm thickness using a Leica VT1000S vibratome. 
Then, we blocked sections in StartingBlock-PBS (ThermoFisher) 
with 1.0% Triton X-100 overnight at 4 °C with gentle shaking. 
We incubated section in mouse anti-neuronal nuclei (NeuN) pri-
mary antibody (1:250, Millipore) in PBS containing 0.5% Triton 
X-100 for 3 d at 4 °C with gentle shaking [43]. We then incubated 
sections for 2 d in donkey anti-mouse Alexa Fluor 647 (1:500, 
Jackson ImmunoResearch) and NeuroTrace 435/455 (1:250, Life 
Technologies) in PBS with 0.5% TritonX-100. We washed sec-
tions three times between each incubation using PBS with 0.5% 
Triton X-100 for one hour each at room temperature. We mounted 
sections in Vectashield mounting medium (Vector Labs). Finally, 
we imaged sections at 1 μm intervals in the z-dimension on a Zeiss 
LSM 780 using 405 nm and 633 nm lasers for excitation together 
with  −405 and 488/543/633 dichroic mirrors.

2.5. Density and morphology of neurons in upper layers

From the histology images described in section  2.4, we 
observed 718  ±  30.4 neurons per plane with an average radius of 
4.59  ±  1.40 μm (n = 53, 106) over all cortical layers. Due to the 
small plane thickness, we counted individual neurons multiple 
times. We then modeled the neurons as spheres and the center of 
each neuron was determined using Fiji/ImageJ v1.48 [44, 45]. If 
the center was within 2 μm on subsequent planes, we considered 
the neurons to be one neuron captured by multiple planes. Once 
we removed these duplicated neurons there were a total of 17 901 
neurons with an average radius of 4.98  ±  1.60 μm and 344  ±  220 
μm2 surface area over all cortical layers. As seen in figure 4 we 
separated the layers of cortex and calculated the neuron density, 
neuron radius, and layer thickness. Average neuron size informed 
the size of our neuron model for layer 1 neurons. We identified 
each layer by the neuron density and morphology with pia con-
taining no neurons and having a lighter appearance, layer 1 con-
taining sparse neurons, layer 2/3 increasing drastically in density, 
layer 4 neurons increasing in soma size, and layer 5 neurons 
decreasing in soma size. These distinctions, as well as a single 
optical section of brain, can be seen in figure 4. The depth of 
the pia (20.2  ±  1.58 μm) set a minimum distance between the 
electrode and a neuron since neurons do not typically exist in 
the pia. Since the pia was removed from the rat brain during pro-
cessing, mouse slices stained with NeuN were used from another 
study. The depth of the other layers indicated at what depth a 
large change in neuron density would occur as well as the type of 
neuron that may be recorded at specific recording depths.

-30
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20
Layer 1 Somatic Current

Time (ms)

C
ur
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nt

  (
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)

Figure 2. Layer 1 neurogliaform cell transmembrane currents. 
The somatic current had a 24 nA trough followed by a sharp 13 nA 
peak.
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3. Results

3.1. Replication of experimental recordings

First, we used our model to simulate spikes that could poten-
tially be recorded from multiple layers of the brain using an 
electrode resembling the μECoG arrays used in Khodagholy 
et  al 2015 [22]. This electrode was 10 × 10 μm2, with 
110 × 110 μm2 of parylene immediately adjacent to the pia 

with no CSF between the electrode and the pia, as shown in 
figure  3. These parameters represent a favorable recording 
environment, assuming perfect electrode adhesion to tissue. 
Using the models described above for layer 1, layer 3, and 
layer 5 neurons, we simulated the resulting spike waveforms 
on the electrodes and measured the peak-to-peak amplitudes. 
Recorded waveforms for the cells in each layer are shown 
across the top of figure 5.

c
x10

1.2 

0.2
0.6

1.0

0

Grey matter

Scalp

 

Skull

a CSF

PEDOT:PSS
Grey matter

Gold
Parylene

b

12,100
100

 µm

Y

Z

Y

Z
Cerebrospinal fluid

Figure 3. Volume conductor model. (a) The finite element model of the rat head consisted of four spheres (grey matter, CSF, skull, and 
scalp) and the recording microelectrode described in table 1. (b) Finite element mesh in which the node density was increased dramatically 
over the electrode and the immediately surrounding area using an adaptive physics controlled mesh defined in Comsol 5.2. C) Voltage 
distribution generated at the electrode and surrounding tissue from the 1 A current source.

Layer 1 9,830

3

3.76 (1.04)

Density           Radius (std)
neurons/mm       µm

Layer 2/3 355,000 5.31 (1.79)

Layer 4 213,000 5.06 (1.60)

Layer 5 198,000 4.77 (1.37)

Figure 4. Rodent brain histological section. One of 73 NeuN-stained coronal sections of cortex. The density of neurons in each layer is 
indicated in neurons per volume and was calculated over at least 0.005 42 mm3. The cortical layer thickness was confirmed by Buzsaki et al 
1998 [40] and Belgard et al 2011 [41]. The radius of neurons in each layer were significantly different than each other (layer 1 and layer 5 
p  <  0.05; layer 2/3 and layer 4 p  <  0.001). Scale bar  =  100 μm.
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The only simulation that produced a detectable spike (>48 
μVpp) was a layer 1 cell placed at the very top of pia, 20 μm 
away from the recording electrode. If we assume a minimum 
signal-to-noise ratio (SNR) of 2 to reliably detect a spike 
and a 12 μV recording noise for a 100 μm2 electrode [42], 
then the smallest detectable neuronal spike is  ∼48 μV (i.e. 
Vmin = SNR × 2 × σnoise). While the layer 1 neuron spike was 
very large at 20 μm (400 μV, larger than seen in Khodagholy 
et al 2015), it dropped to 50 μV at only 60 μm away from the 
electrode. The large Vpp at an electrode-to-neuron distance of 
20 μm may be attributable to perfect soma positioning and 
lack of any CSF at the electrode site (modeled below). Models 
of neurons from layers 3 and 5 only produced very small 
spikes at the brain surface with rising edge first. In all cases, 
the amplitude was below 1 μV. Therefore, we focused on layer 
1 neurons for the remaining analyses in this study.

Layer 1 cell recording could also reproduce how neurons 
in Khodagholy et al 2015 [22] appear on a single contact or 
adjacent contacts with detectable amplitudes, but rarely on 
any distant contacts. Figure  6 shows the waveform ampl-
itude from a simulated layer 1 neuron 20 μm away. It had a 
peak-to-peak amplitude of 400 μV on the closest contact, a 
detectable amplitude of 60 μV on the adjacent contact, with 
30 μm between the 10 × 10 μm2 electrodes, and an amplitude 
of 4.5 μV two contacts away. The model shows that a neuron 
placed 30 μm deep, directly between two contacts, produces 

an amplitude of 135 μV on each contact. If we assume a max-
imum recording depth of 60 μm, we would be able to record 
activity from  ∼20 neurons under a 160 × 320 μm electrode 
grid (NeuroGrid) based on the layer 1 thickness and neuron 
density (9830 neurons mm3) estimated from our histology 
results.

Our computational model posited the ideal scenario for 
recording in which the largest factors affecting the accuracy of 
this estimate were electrode adhesion to the brain and neuron 
size. With the addition of a few microns of CSF between the 
electrode and the brain, the signal decreased by approximately 
50%. With CSF present, the estimate of the number of record-
able neurons decreased from 20 to 4 neurons. These estimates 
included 20 μm of pia between the electrode and layer 1 yet 
other studies indicate that pia is slightly thicker in rats (∼25 
μm; [46]). If the thickness of pia in rats was increased to 30 
μm, then the estimate of the number of recordable neurons 
decreased from 20 to 15 neurons. The theoretical estimate 
agreed well with experimental data in which the activity 
of  ∼9 individual neurons was consistently detected with the 
NeuroGrid [22].

3.2. Effects of electrode geometry, insulation, and adhesion

After validating the model against experimental results, we 
explored the design space of electrodes capable of recording 

0 10

500

[ms]

[µ
V

]

La
ye

r 
5

La
ye

r 
4

900 µm

600 µm

115 µm

0-20 µm

La
ye

r 
2/

3
L1 Pia Mater

10 ms

500 µV

Vpp 1µVV

10 ms

Vpp 2 µV

10 ms Vpp 60 µV Vpp 400 µV

Figure 5. Diagram of various neuron sizes, depths, and recorded spiking activity. According to their respective layers, we placed the layer 
1, 3, and 5 model neurons at various distances away from the 100 μm2 electrode contacts. To provide the optimal recording situation, we 
placed each neuron on the shallow end of their respective layer while preventing the neuron from extending past the edge of the brain. 
Axonal and dendritic recordings of layer 3 and 5 neurons never exceeded 1 μV when the neuron was placed at the correct biological depth.
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surface single units in terms of size, insulation, and adhesion. 
Electrode surface area is a critical design parameter, with site 
sizes of 100 μm2 or smaller requiring highly conductive sur-
face preparations and microfabrication due to their high imped-
ance [22, 47]. Figure 7(a) shows the recording amplitude as a 
function of electrode surface area for a layer 1 neuron 20 μm 
from the electrode. The recording amplitude rapidly decreases 
for electrode surface areas larger than 100 μm2, which suggests 
electrodes should have surface areas  =  100 μm2 to detect single-
unit activity from the brain surface. Therefore, previous μECoG 
electrodes may not have been small enough to detect single units.

Insulation was also critical for high recording amplitudes 
in the model. Electrodes without insulation (i.e. parylene 
replaced with CSF) produced low recording amplitudes 

(figure 7(a)). Therefore, we also varied the amount of insula-
tion on the back of the electrodes as shown in figure 7(b). To 
maintain 95% of the signal amplitude, 60 × 60 μm2 lateral 
insulation was required for a 10 × 10 μm−2 recording elec-
trode surface area.

Blood flow and respiration can cause micromovements of 
the brain where the brain may move vertically up to 4 μm 
and 30 μm, respectively [48]. To model the effect of these 
micromovements, as well as electrode adhesion in general, we 
added a layer of CSF between the insulation and the brain as 
shown in figure 7(c). We tested CSF thicknesses of 3.5 μm 
and 30 μm that reduced the recording amplitude by 55% and 
97%, respectively. This result suggests that that adhesion is 
also critical for high amplitude recording.
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Figure 6. Diagram of simulated μECoG neural recordings. Grid of three 100 μm2 electrodes on the surface of the brain with a layer 
1 neurons at 20 μm deep and 30 μm deep. Inter electrode spacing of 30 μm with insulation (parylene-c) surrounding the electrodes 
horizontally including a 4 μm layer of insulation on the back.
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comparison between the ideal model, where the electrode is perfectly adhered to the brain, and a more realistic recording environment, 
where 3.5 μm of insulation was replaced with highly conductive CSF. The thin layer of CSF decreases the signal amplitude by 55%.
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3.3. Effects of neuron size and channel density

The results above suggest that there can be non-obvious 
interactions between cell size, distance, and that electrode 
design choices may significantly impact recording sensi-
tivity. While the distance relationship is well understood 
[11], we sought to model the effect of neuron size, indepen-
dent of other parameters. As described in section 2.1, we 
created a simplified neuron model based on the well-estab-
lished layer 5 model [23, 24]. Our simplified model used 
a line of cylinders with equivalent ion channel densities. 
When we scaled the reduced model to have a soma diam-
eter equal to the diameters of the more detailed models (18 
μm for layer 3, 24 μm for layer 5), the spike amplitudes 
of the reduced model were within 13.3 and 1.0 percent of 
the spike amplitudes of the layer 3 and layer 5 cell models, 
respectively (figures 8(a) and (b)). Figure  8(c) shows the 
effect of scaling the neuron size on voltage amplitude. 
Overall, if channel densities and properties remain con-
stant as the size of the neuron increases, waveform ampl-
itude scales with soma diameter squared, or equivalently 
the waveform amplitude scales linearly with soma surface 
area. This trend is observed because the number of ion 
channels, and thus the transmembrane current, are scaling 
with the area in our simplified model and the voltage is 
linearly proportional to the transmembrane current. In this 
model, a neuron with a 10 μm diameter would produce a 
peak-to-peak spike amplitude of 66.8 μV (compared to  
307 μV for the 24 μm layer 5 cell), an 8 μm diameter 
neuron would produce a spike amplitude of 46.0 μV (our 
estimated minimum detectable signal), and a 5 μm diam-
eter neuron would produce a spike amplitude of 18.5 μV. 
We altered the density of Na+ and K+ ion channels in the 
simplified neuron by  ±50% to determine if these results 
are sensitive to the specific channel density chosen. The 
largest signal increase was 7.8% and occurred when the 
Na+ channel density was increased and the K+ channel den-
sity was decreased. The largest signal decrease was  −1.8% 
and occurred when the Na+ channel density was decreased 
and the K+ channel density was increased.

4. Discussion

In this modeling study, we explored possible sources of single-
unit recordings from μECoG electrodes and examined how 
future electrode designs can take advantage of this remarkable 
capability. Towards this end, we used three neuron models: 
a layer 1 neurogliaform cell, a layer 5 pyramidal cell, and a 
layer 3 pyramidal cell [23, 24]. We also created a novel neuron 
model, based on a simplification of a layer 5 pyramidal cell, 
which could be scaled to illustrate the relationship between 
neuron size and Vpp [23, 24]. We then developed a volume 
conductor model of the rat head along with various μECoG 
electrode designs to determine the effect of electrode size 
and insulation geometry on Vpp [11, 39, 49]. The results of 
our model analyses agreed well with experimental recordings 
from the literature [22] and predicted the effects of electrode 
design (e.g. the effect of electrode contact size and insulation 
geometry) on extracellular recording amplitude.

Specifically, a naive application of a 10 × 10 μm2 electrode 
and a layer 1 neurogliaform cell appeared to accurately repli-
cate the experimental results in Khodagholy et al 2015 [22]. 
Although we recorded a signal from layer 3 and 5 pyramidal 
neurons in a noise-free environment, the Vpp were less than 
1 μV. While dendritic currents in aggregate may contribute 
to low-frequency local field potentials [50, 51], this model 
suggests dendrites originating from a single neuron are not 
the source of observed spikes on the surface of the cortex. 
Furthermore, the density of neuron cell bodies in layer 1 
match the density of recorded spikes in Khodagholy et al 2015 
[22], indicating that the single-unit recordings in Khodagholy 
et al 2015 likely originate from layer 1 neurons.

In this study, we developed a scalable neuron model that 
allowed us to examine how Vpp scaled with neuron size. Our 
results suggest Vpp decayed rapidly with decreasing cell size 
and cells smaller than 8 μm would be difficult to detect with 
recording electrodes even at very close distances (figure 8). 
The difficulty of recording from neurons smaller than 8 μm 
in diameter is consistent with experimental data showing the 
challenges of recording from areas with predominantly small 
neurons, such as songbird areas and dorsal striatum [52, 53]. 
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J. Neural Eng. 15 (2018) 056007



M Hill et al

9

This result further highlights that single-unit recordings, par-
ticularly those from electrodes with large recording surfaces, 
have been biased toward recording signals from large neurons.

Using the base electrode model developed in this study, 
we made changes to the surface area of the electrode and the 
size of the lateral insulation. We determined that increasing 
the size of the electrode decreased the recording amplitude. 
The decrease in measured voltage when increasing the surface 
area of the electrode is expected due to spatial averaging of the 
voltage over a larger surface area [11, 21, 54, 55]. Furthermore, 
our model showed a rapid decrease in recording amplitude for 
electrodes larger than 100 μm2 (figure 7(a)), indicating that 
an electrode surface area  =  100 μm2 may be an ideal size for 
μECoG arrays. The amount of lateral insulation also signifi-
cantly affected the recording amplitude. For electrodes with 
no lateral insulation, recording amplitudes were small and 
would likely be undetectable (figure 7(a)). However, with 
3600 μm2 of lateral insulation, the recording amplitude was 
95% of the signal amplitude for a 10 × 10 μm2 electrode con-
tact with an effectively infinite amount of lateral insulation. 
μECoG arrays with this amount of lateral insulation have been 
fabricated previously [41, 56]. Since the changes to the model 
are independent, the effects of electrode geometry, insulation, 
and adhesion, as well as the effects of neuron size and channel 
density, can be combined using superposition. These results 
suggest that although μECoG electrode contact dimensions 
should shrink to the cellular level, the insulation needs to 
remain fairly large in comparison.

In our model analysis, we also considered the effects of 
micromovements related to blood flow and respiration that 
could occur due to non-ideal adhesion between the brain 
and the electrode. We represented these micromovements 
using an additional layer of CSF with a variable thickness. 
This CSF layer substantially decreased the recording ampl-
itude (i.e. 55% and 97% for CSF layers of 3.5 μm and 30 μm, 
respectively). This is due to the decreased resistance between 
the electrode and the neurons as well as the low resistance 
pathway to ground that the CSF provides [11]. This result sug-
gests that adhesion is critical for high-amplitude recordings. 
Although the adhesion of μECoG electrode arrays to the brain 
has not been fully investigated, it has been shown that elec-
trode arrays thinner than 5 μm conform well [22, 56]. Further, 
adhesion and flexibility of μECoG electrode arrays continue 
to increase through the addition of holes to the substrate and a 
decrease in array thickness [56].

It is important to note that neurons needed to be within 60 
μm of the recording contact to obtain a signal over 50 μV. 
This short distance raises the question of whether or not these 
electrodes could function under chronic recording conditions 
in which they would be surrounded by encapsulation tissue. 
Previous modeling studies have shown that an increase in 
tissue resistance due to electrode encapsulation may actually 
increase the recording amplitude [11, 57]. However, exper-
imental results suggest that ECoG electrodes can develop 
thick scars (∼1–2 mm) [19] that would likely increase the dis-
tance between the electrode and the neurons and produce a 
corresponding decrease in the recording amplitude. It could 
be possible to use electrode arrays with elements less than 15 

μm in diameter to mitigate scarring [58]. At 10 × 10 μm2 the 
electrode would be small enough to reduce scar formation, but 
the necessary insulation (⩾3600 μm2) would cause scarring 
when chronically implanted. Thus, biocompatible coatings 
may be needed for chronically viable electrodes (e.g. Azemi 
et al 2008 [12] and Jorfi et al 2015 [14]).

Although this study provided a means to systematically ana-
lyze the origin of single-unit surface recordings with μECoG 
electrodes and the effects of electrode design, our model 
infrastructure was subject to a number of limitations. First, 
we made the standard assumption that the electrical proper-
ties of the biological media were resistive and linear within the 
context of neural recording [59]. Model solutions were static 
and did not consider the resistive and capacitive properties of 
the electrode-electrolyte interface of the recording electrodes. 
However, for well-designed recording systems, the electrode-
electrolyte interface has a minimal effect on the recorded signal 
[55, 60–62]. Second, the rat brain anatomy was simplified and 
represented by four concentric spheres. However, previous 
work has shown that computer models of extracellular micro-
electrode recordings are largely insensitive to the geometry of 
the head model [11, 39]. Third, because we only considered 
acute neural recordings in this study, we did not investigate 
the effects of electrode encapsulation and the corresponding 
changes in tissue impedance surrounding the electrode that 
could potentially affect the recording amplitude for a given 
electrode design [11, 57]. Fourth, in the simplified layer 5 
pyramidal neuron model, we collapsed the dendritic arbor into 
one large apical dendrite which increases the length constant 
of the neuron. This increase in length constant could make the 
neuron electronically compact and produce a small increase 
in the amplitude of the extracellular action potential [34, 37]. 
Fifth, although the simulated layer 1 neuron came from a valid-
ated study, it is larger than the average layer 1 neuron. When 
the neuron model spike size was matched artificially, the spike 
size decreased by 56%. Finally, we did not incorporate noise 
sources (e.g. thermal, biological) into our model analysis. 
Recording noise sources, such as thermal noise, could play a 
significant role in determining the optimal contact size since 
these noise sources can vary with contact size [42, 63].

5. Conclusion

In this study, we used a computational model of neural 
recording with μECoG electrodes to investigate the ability 
to record individual neurons from the surface of the brain 
and determine the design parameters that support single-unit 
recording. Our modeling results corroborated experimental 
data demonstrating single-unit recordings with μECoG elec-
trodes. Our results also suggested that these signals most likely 
originate from layer 1 of cortex [22]. It is important to note 
that the recording amplitude, and consequently the recording 
depth, depend heavily upon the adhesion of the electrode to 
the brain. Although μECoG electrodes cannot record from 
deep layer neurons, many applications that consistently uti-
lize interneurons in superficial layers of the brain, such as epi-
lepsy, would benefit from recording that activity of superficial 
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neural signals [1, 20]. In this study, we also characterized the 
recording amplitude’s dependence on lateral insulation and 
electrode size. Model results show that both design param-
eters significantly affected the recording amplitude and these 
parameters must be considered in future studies. In spite of the 
challenges, the ability to record individual neurons without 
penetrating the brain provides new scientific and clinical 
opportunities that may change how we interact with the brain.
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Appendix. Equations for layer 1 neuron ion channel 
currents

A.1. Fast sodium current

αm = −0.034 133 × ν + 24
exp( ν+24

−5 )− 1 (A.1)

βm = 0.2848 × ν − 4
exp( ν−4

5 )− 1 (A.2)

τm =
1

αm + βm
 (A.3)

m∞ =
αm

αm + βm
 (A.4)

αh =
0.296 48

exp( ν+64.4184
20 )

 (A.5)

βh =
3.0931

1 + exp( ν+12.1463
−10 )

 (A.6)

τh =
1

αh + βh
 (A.7)

h∞ =
αh

αh + βh
 (A.8)

INa = gmax × m3 × h × (V − ENa). (A.9)

A.2. Delayed rectifier potassium current

αn = −0.07 × ν + 8
exp( ν+8

−6 )− 1 (A.10)

βn = 0.264 × exp(
ν + 33

40
) (A.11)

τn =
1

αn + βn
 (A.12)

n∞ =
αn

αn + βn
 (A.13)

IK = gmax × m4 × (V − EK). (A.14)
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