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KEY POINTS

� Brain-machine interfaces (BMI) directly access the nervous system to control arm and hand
prostheses.

� BMI control algorithms are highly transferrable to peripheral recording techniques for myoelectric
prostheses.

� Researchers investigating both brain-machine interfaces and myoelectric control face similar chal-
lenges controlling multiple degrees of freedom and acquiring clean calibration data from patients
with injuries or disabilities.

� Solutions to these issues will likely be transferable between the 2 technologies.
INTRODUCTION surgery expanded these benefits to users with
The loss of an upper extremity is a devastating
injury that severely affects a person’s ability to
interact with the world around them. Hands remain
our primary mechanisms for tool use and are
important components of social interaction. Ad-
vances in robotics have yielded electronic pros-
theses that can mimic anywhere from 5 to
30degrees of freedom (DOF) of the human hand
and provide adequate gripping force for functional
tasks.1–3 The clinical standard is to control these
devices with surface electromyography (EMG),
allowing users to use muscle activity for control.
Dual-site control schemes are cumbersome and
unintuitive, requiring a substituted pair of easily
accessible agonist-antagonist muscle groups to
trigger switches between hand and wrist move-
ments and modulate single DOF. For some users,
state of the art pattern recognition systems have
eliminated the need for triggers or movement sub-
stitutions, and targeted muscle reinnervation
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more proximal amputations.4,5 However, simulta-
neous control of multiple DOF has proved diffi-
cult.6 Intuitive grasp selection has been
demonstrated in controlled studies5,7,8 and has
only recently become available in commercial
devices.

One of the main challenges of existing systems
is the ability to extract specific motor commands
from surface EMG, which represents a spatiotem-
poral summation of motor unit activity.9 Classi-
fiers, the algorithmic engine of pattern
recognition systems, are adept at distinguishing
movements from such summaries and can even
remain accurate in systems with fewer input chan-
nels.7,8,10 However, scaling to multi-DOF control
requires distinguishing a rapidly increasing num-
ber of movement combinations. Hierarchical
schemes have been proposed to alleviate this
issue,11 but the lack of independent control signals
remains problematic.6 Intuitive grasp and fine mo-
tor control is of high interest to prostheses users12
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but is difficult because many muscles responsible
for thumb and finger movements are either lost
due to the level of amputation or obscured by
more superficial muscles. Peripheral nerve inter-
facing and surgically invasive recording tech-
niques are being proposed to resolve these
issues.13–16 Extracting precise movement com-
mands from electrophysiological activity is para-
mount to many rehabilitation and neuroprosthetic
applications. In some of these cases, researchers
are developing implantable devices and algo-
rithms to solve problems that are fundamentally
similar to the challenges experienced with tradi-
tional myoelectric prosthetic devices. Brain-
machine interfaces (BMI) are being explored for
movement assistance and control of robotic de-
vices or computers for patient populations
including persons suffering severe stroke, spinal-
cord injuries (SCI), or amyotrophic lateral sclerosis.
Here the authors discuss progress in BMI for neu-
roprosthetic control and how they could inform
development of better implantable EMG control
strategies for myoelectric hands.
DISCUSSION
Signal Acquisition

For patients suffering neurodegenerative diseases
or injuries, for example, late-stage ALS or high-
level SCI, severe damage renders the peripheral
nervous system either an impossible or a poor
source of information to extract motor commands
for prosthetic control. For these applications, re-
searchers are looking to the brain as an informa-
tion source. The brain is the origin of intended
movement commands for arm and hand control,
and its somatotopy is reliably consistent between
individuals to facilitate targeting these functions.
Electroencephalography (EEG) is a noninvasive
technique that records electrical brain activity
from the surface of the scalp. Although useful for
monitoring or diagnostic applications, EEG has
not been widely adopted for neuroprosthetic con-
trol. The activity of a single neuron is too small to
be recorded remotely through the skull, so EEG
recorded reflects a summation of the synchronous
activity of thousands or millions of pyramidal neu-
rons.17 The low conductivity of bone and the expo-
nential decrease in voltage gradients as the
recording electrode becomes more distant further
reduces the signal specificity and lowers the signal
to noise ratios (SNR), making signal interpretation
difficult.18 These properties make EEG ill-suited
for prosthetic control applications, which require
algorithms to confidently estimate, or “decode”,
movement intentions in real time. Over the past
2 decades, BMI researchers have capitalized on
Downloaded for Anonymous User (n/a) at UNIVERSITY OF MICH
2022. For personal use only. No other uses without permission. 
the availability and development of surgically inva-
sive techniques for neuroprosthetic control to
eliminate the need to record signals through the
bone and improve SNR.
Recent surveys have shown that fast, accurate,

and natural control of external prostheses or resto-
ration of natural arm and hand control are priorities
for patientswith SCI considering surgically invasive
procedures.19,20 For motor control applications,
intracortical electrodes have yielded the best per-
formance in both nonhuman primate (NHP) and
clinical studies.21–23 The Utah Electrode Array
(Blackrock Microsystems, Salt Lake City, Utah,
USA) is clinically available inmultiple configurations
with 96 to 128 independent electrode shanks that
penetrate 1.0 to 1.5 mm into the brain. When
implanted into the motor cortex, penetrating
shanks capture local field, single neuron, or multi-
unit activity reflective of intended movement kine-
matics and dynamics.24,25 Access to source
signals provides engineers with the opportunity to
develop systems that predict and actuate pros-
thetic devices without exceeding the time delay of
natural movement. Neural firing rates can be
counted bymanual spike sorting to identify individ-
ual wave forms,26 threshold crossings that aggre-
gate units per channel,27,28 or power in frequency
bands that reflects motor neuron firing.29–31 Signal
processing techniques that capture individual
neuron activity have yielded the best performance.
Low-frequency (<300Hz), local field potentialsmay
be used to augment firing rates as a stable input but
have not proved sufficient as a standalone
feature.32–34 Biological responses to the pene-
trating electrodes can lead to tissue scarring and
cell death, which ultimately reduce signal quality
and the longevity of the BMI.35–37 Novel electrode
designs, to minimize scarring and increase
biocompatibility, are an active area of research to
address this challenge.38–40 Flexible electrode
grids record electrocorticography (ECoG) from
the surface of the brain and may alleviate some of
the biological risks of penetrating electrodes,
although the precision and speed of motor control
has been lacking to date.41 For intracortical and
ECoG applications, multiple groups are developing
implantable electronics to bring systems closer to
clinical reality.42–45

For persons with amputations, activity of the pe-
ripheral motor system can be monitored via sur-
face EMG and used to command prostheses.
Commercially available systems predict move-
ments based on compound muscle activation pat-
terns. Depending on patient anatomy and
prostheses capabilities, this approach may be suf-
ficient. However, simultaneous control of wrist
joints or dexterous hand functions has proved
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difficult.6 Access to movement-specific com-
mands from the neuromuscular system can
improve device control. Muscle tissue has proved
to be a durable interface for implanted electrodes
to record stable EMG for months and years,14,16,46

and routine surgical techniques have used either
transplanted or denervated muscle to provide a
stable interface with the nervous system.4,16,47

Intramuscular EMG is often preprocessed for input
into control algorithms by band-pass filtering,
rectification, and integration. Bandwidths and pro-
cessing windows vary across studies but are
similar to parameters used to isolate nearby mus-
cle activity in surface EMG.13,14,16 In a bipolar
configuration, the mean absolute value of each
filtered channel reflects a highly localized summa-
tion of motor unit activity specific to the implanted
muscle. Like intracortical electrode grids, intra-
muscular EMG records motor impulses with a
high spatial and temporal resolution. Therefore, it
is not surprising that a similar algorithmic frame-
work can be applied to control prostheses from
downstream motor units in extremity muscles.
This review focuses on intracortical approaches
that have enabled dexterous control of natural
limbs48,49 or robotic prostheses.22,50
Regression Algorithms

Many patients have positive attitudes regarding
invasive BMIs if they provide high levels of perfor-
mance.19,20 Most controllers accomplish this with
linear regression algorithms that adhere to similar
framework. Typically, regressors model the
intended position or velocity of DOF as continuous
variables that explain neural activity.21,22,51 The
regression algorithm, or “decoder”, accepts firing
rates as an input and usually outputs velocities in
each DOF to control the virtual or physical pros-
theses. Velocity output is typically used regardless
of whether or not neural activity is assumed to be
tuned to position21,52 and is suspected to produce
a simple physical system for real-time control in
the presence of noisy inputs.53,54 Researchers
have also noticed that executing algorithms on
shorter time intervals (<100 ms) improves online
performance, which may be contradictory to off-
line simulations,55 and this is thought to be due
to improvements in both the rate of visual feed-
back and control rate that improve error correction
and movement planning.23 To date, many BMIs
use linear regressions to decode arm reaches,
which are then mapped to provide 2 DOF cursor
control in a virtual environment. However, clinical
trials have demonstrated that the following frame-
work can also be applied to control higher DOF ro-
botic limbs22,50 or functional electrical stimulation
Downloaded for Anonymous User (n/a) at UNIVERSITY OF
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(FES) systems.48,49 More recently, both NHP and
clinical studies have demonstrated that a linear
framework can be extended to precisely control
individual finger or grasp dimensions.31,52,56

Over the last decade, clinical BMI have most
commonly used 2 linear algorithms: optimal linear
estimation (OLE) with ridge regression and the
Kalman filter (KF).22,50 In the early 2000s, the first
linear regressors in NHP used a full second of
time history to produce a stable and accurate
decoder.57 However, basing motor commands
on outdated neural activity reduces responsive-
ness and negatively affects real-time control.
OLE resolves this issue by estimating firing rates
based on the previous 450 ms but remains
responsive by using an exponential filter to priori-
tize the most recent samples. Firing rates are
collected in 33 ms time bins and input into the
OLE to provide velocity predictions. The OLE is
calibrated by first modeling the firing rate of
each channel as a function of velocities, then
finding inverse coefficients for the online decoder.
The KF was first introduced in NHP in 2004 and
models channel activity as a function of kine-
matics.51 This model is then fused with a physical
model, reflective of the intended movements, that
recursively estimates position and/or velocity
states at each time step. Here, the physical model
enforces stability, whereas updates to the neural
measurement ensure responsiveness. Typical KF
implementations execute in intervals ranging
from 20 to 100 ms. Both techniques depend on
sampling channels that are tuned to different
movement directions. Some neurons in the motor
cortex may be highly specific to individual move-
ments.58 However, observing numerous broadly
tuned channels may provide sufficient information
for control, provided they are well modulated and
can be represented by a linear model. In fact, the
regularization method in OLE encourages activity
from one neuron to be related to more than one ki-
nematic variable. For both the KF and OLE, chan-
nels with sparse activity (<1 spike per second
average firing rate) during the calibration session
are usually ignored. These channels cannot be
well represented by linear models, which provide
optimal solutions when the predicted variables
have normally distributed errors. Neuron spike
events closely resemble a Poisson process, which
significantly deviates from a normal profile for low
firing rates. Evidently, motor prosthetic implemen-
tations have succeeded by leveraging profuse
channels and large enough processing windows
to avoid a problematic violation of this assump-
tion. However, neural interfaces that operate on
extremely rapid timescales would benefit from
nonlinear techniques.23
 MICHIGAN from ClinicalKey.com by Elsevier on March 11, 
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Following its use in BMI, the KF has been
applied to dexterously control multi-DOF hands
using inputs from the peripheral motor system.
The same framework was successful in both bipo-
lar electrode configurations that measure motor
unit activity in specific muscles16 and referencing
schemes that capture potential differences be-
tween muscles.13 However, there are some minor
differences between peripheral and BMI imple-
mentations. Intracortical electrode grids are
designed to interrogate individual neurons in the
brain with a high channel count to capture different
motor functions. By comparison, intramuscular
EMG systems often have lower channel counts
but use larger electrodes that capture many
nearby motor units. Concerns of sparse activity
are therefore not applicable to well-placed EMG
leads. Furthermore, because muscles can be indi-
vidually targeted during surgical implantation,14–16

engineers can be confident in the functional repre-
sentation of individual channels. If desired, irrele-
vant channels can explicitly be masked from
decoders instead of relying on automated
screening techniques. In the abovementioned clin-
ical studies, the position output of the KF was used
to control individual wrist and hand DOF. Velocity
control may be useful depending on hardware ca-
pabilities, although it is evidently not required. A
strong relationship between individual muscles
and finger movements produces a decoder that
requires less smoothing or active modulation. Pa-
tients have used this framework to simultaneously
control 3 to 6 wrist and hand DOF using research
grade hardware or virtual reality environments.13,16

The dexterity and precision of control may be
limited with commercially available hands that do
not offer position or velocity control of individual
motors.
BMI and peripheral interfaces can be used to

perform different tasks with a variety of end effec-
tors. It is important to consider hardware differ-
ences when discussing the limitations of linear
regression algorithms. For example, BMI often
control computer cursors for communication.59

In this case, errors may seldom be due to a lack
of physical constraints, context changes, and
comparatively few DOF. However, for both BMI
and peripheral interfaces, directly controlling
multi-DOF functional electrical stimulation sys-
tems or robotic limbs can prove more challenging.
Hardware latency and noise can reduce precision,
and a common issue with regression algorithms is
the inability to independently activate DOF.13,52,60

Many reaching and grasping movements use syn-
ergistic activations, so this issue may only be
apparent for fine motor tasks. In BMI applications,
motor neurons are broadly tuned to multiple
Downloaded for Anonymous User (n/a) at UNIVERSITY OF MICH
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movements, which can cause problems related
to coactivations. Recording from a larger number
of neurons theoretically results in better separa-
bility of DOF. However, even in EMG applications
where specific muscles can easily be targeted,
coactivations still cause difficulties for decoders;.
This could be due to natural movement synergies
required to stabilize joints, which are problematic
if they are not properly incorporated into the algo-
rithm. Without a more complete sampling of mus-
cle activity in these contexts, decoders will
broadcast these signals as movement commands.
Ultimately, the performance of regression algo-

rithms may be most severely limited by channel
count or, in other words, the number of information
sources available for each DOF. Techniques to
resolve these issues include nonlinear output
thresholds13 and hybrid controllers that use
pattern recognition to suppress unwanted activa-
tions,51,61 although these solutions may limit dex-
terity and increase exertion. Biomechanical
models account for natural nonlinearities in muscle
activation forces to improve decoder robust-
ness.62 However, the ability for a hand model to
differentiate finger movements depends on the
complexity of the model itself as well as muscle
synergy mappings in undersampled configura-
tions. Other nonlinear algorithms such as neural
networks may one day learn to isolate DOFwithout
sacrificing dexterity.63 However, approaches with
more advanced modeling capabilities may require
higher quality calibration data in order to be effec-
tive in multiple contexts.64
Real-Time Pattern Recognition

Classifiers can be used in to detect movement
states or discrete commands in real time. Reducing
movement prediction to discrete states can also be
useful when there are an insufficient number of
channels modulated by a particular movement. In
BMI, neural states can be detected to classify
hand grasps for FES control.49 In other implemen-
tations, classifiers have been used to improve the
performance of virtual cursors by initiating stop or
click states.59,65 The Hidden Markov Model
(HMM) has emerged as a common framework to
optimize movement state predictions. The HMM
represents neural dynamics by explicitly modeling
transitions between several underlying latent
states.61 This capability allows the prediction of a
click intention, as it occurs in the brain.59 In addition
to stop or click states, classifiers have also been
used to suppress unintentional movements of
regression controllers by selecting discrete trajec-
tories.51,61 In this framework, integration delays
are extremely costly because they reduce controller
IGAN from ClinicalKey.com by Elsevier on March 11, 
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responsiveness and the patient’s ability to make
fine adjustments. Fortunately, the ability of the
HMM to model and evaluate state changes over
time allows it to operate on rapid timescales without
sacrificing stability.61 In addition to the HMM, deep
learning architectures such as recurrent neural net-
works can recognize temporal dynamics to boost
pattern recognition performance of fine motor
movements, for example, distinguishing hand-
written letters imagined by a patient withSCI.66

This classifier required characters to be completed
before a prediction could be issued, but it demon-
strated that complex movements with high tempo-
ral variation can be easier to distinguish than less
complex gross movements.

Movement classifiers are a natural fit for
myoelectric hands that are designed to switch be-
tween hand grips rather than individual finger con-
trol. Some pattern recognition systems even offer
grasp selection capabilities.5,7,8 However, perfor-
mance may degrade across different physical
contexts.10 Intramuscular EMG improves
controller reliability by providing stable signals
with a high signal-to-noise ratio.15,67 However, it
also may allow for techniques such as the HMM
to confidently estimate grasp states on faster time-
scales. Furthermore, access to high resolution
muscle signals could increase the number of
movements that can be predicted by neural net-
works.. EMG implementations may differ from
BMI in the following ways. For BMI applications,
the HMM often characterizes movements with
many (up to 20) underlying neural states.61 To
represent downstream muscle activity, only a
few latent states may be required per movement.
Naive Bayes is commonly used as the latent state
model for the HMM because it can model many
states without large amounts of training data.68

However, most BMI implementations have been
used for cursor control,59,65 and myoelectric pros-
theses need to operate across a wider range of
physical contexts. Because intramuscular record-
ings can provide independent movement sig-
nals,16 it is possible that more robust underlying
models can be used without sacrificing predictive
power. Similarly, neural networks may be able to
predict grasps from EMG with fewer nodes or
layers than comparable BMI implementations.
Although, as regression algorithms, they may
require improvements to the calibration routine.
Calibration Techniques

The performance of both pattern recognition and
regression algorithms depends on the quality of
calibration data, and this may be especially true
for neural networks that may require richer
Downloaded for Anonymous User (n/a) at UNIVERSITY OF
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calibration data to take advantage of their
increased fitting capabilities.64 Many research
groups use able-bodied participants to validate
approaches. Although these volunteers are valu-
able to the development process, their perfor-
mance may not directly reflect the capabilities of
persons with amputations. A large portion of BMI
research is also done with able-bodied NHP. In
an able-bodied model, the ground truth of move-
ment intention can be used for training. In that
case, ill-fitted parameters can largely be ascribed
to a lack of modulated neurons or poorly
measured kinematics and motor noise.69 On the
other hand, kinematics cannot easily be measured
for patients with injuries or motor system impair-
ments. This can severely limit the quality of training
data for fine finger and grasping movements.64

Neural plasticity may naturally alleviate this issue,
as it has been demonstrated that NHP can eventu-
ally learn to use BMI with suboptimal parame-
ters.70 However, advanced calibration techniques
can improve performance either by improving
initial training data quality or by reducing the
learning curve.

Similar to commercial pattern recognition sys-
tems, BMI are calibrated by having the user mimic
a computer animation or robotic hand to capture
neural activity reflective of an intended movement.
However, it has been documented that brain activ-
ity changes between observed, imagined, and
attempted grasps.71 Patients who lack peripheral
motor abilities may have a difficult time
consciously distinguishing between these brain
states or precisely following movement cues in
part due to broken feedback links. In this sense
the quality of training data can depend on a pa-
tient’s sensorimotor function. BMI researchers
have found that training grasps with objects in
place can improve decoder performance, possibly
by encouraging consistent engagement of motor
pathways.56,72 To account for variations in attemp-
ted movement speeds, time warping techniques
may prove useful by structurally aligning training
data.66 For myoelectric prostheses control, these
upstream phenomena could manifest themselves
in the improvements noticed with bilateral mirror
training.64

In cases where an initial training dataset proves
difficult to obtain, adaptive calibration techniques
have proved effective for BMI. Adaptive calibration
for regression algorithms can be completed in sin-
gle or multiple stages and has shown effective
double performance in virtual tasks for arm move-
ments.21–23 These techniques use goal-oriented
supervised tasks, so online control errors and the
intended movement can easily be identified and
used to reweight parameters. Unsupervised
 MICHIGAN from ClinicalKey.com by Elsevier on March 11, 
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� Brain machine interfaces allow patients to
fluidly control robotic arms or reanimate pre-
viously paralyzed limbs.

� Implantable EMG systems can use similar al-
gorithms to provide dexterous grasp control,
although simultaneous and independent
control of high DOF systems remain
challenging.

� Software solutions are likely to be shared be-
tween these 2 technologies, although re-
searchers and engineers must keep in mind
some differences.

� Fully implantable electronic systems need to
be developed to move both technologies
from research to clinic.
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calibration may seem more convenient but re-
quires a framework to automatically identify grasp
errors.73 Supervised techniques may also be
preferred to focus on difficult movements and
decrease adaptation time.74 Most supervised ap-
proaches estimate the correct movement intention
by rotating or aligning the velocity vector toward
the goal.21,22 Finger movements have a short
range of motion, and motor cortex hand region
neural activity has been shown to be strongly
correlated with position as well as velocity.
Although it is unclear if existing techniques provide
an optimal intention estimate for grasp recalibra-
tion, they are still beneficial for BMI.52 Closed-
loop adaptation allows the decoder to recognize
shifts in neural tuning between offline calibration
and online control.69 Users also adapt their own
behavior to improve online performance of both
BMI and EMG controlled devices.74–76 For BMI,
neuroplasticity may play a more prolonged role,
reshaping activation patterns to best utilize a given
decoder.76 This type of motor learning is being
explored for prosthetic and movement rehabilita-
tion applications even though remapping muscle
synergies may be difficult.77–79 It is unknown how
transferrable adaptive BMI techniques will be, as
they are only recently being investigated.74 The
success of different calibration techniques for per-
sons with amputations is likely to be individual.
Advanced or adaptive calibration methods may
not be required for skilled patients who also have
excellent perception of their phantom limb but
may be increasingly valuable for patients with
more proximal or bilateral amputations.
SUMMARY

Intracortical BMI and implantable EMG technolo-
gies aim to provide fast and fluid control of
upper-limb prostheses by interrogating motor
neurons and peripheral motor units, respectively.
These high-resolution signals can be fed into
high-speed pattern recognition and regression al-
gorithms to control digital cursors or robotic
hands. Common solutions may exist to common
issues such as unintended movement coactiva-
tions or collecting quality calibration data. In the
future, BMI may be a rich source of algorithm
inspiration, as the number of peripheral channels
for EMG systems increases or stable nerve moni-
toring techniques are developed. Peripheral nerve
interfaces may increase the appeal of myoelectric
prostheses to patients with more proximal ampu-
tations. For patients with varying skill levels and
sensorimotor function, enhanced and adaptive
calibration techniques can reduce training time
Downloaded for Anonymous User (n/a) at UNIVERSITY OF MICH
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and may be essential to delivering high-
performance prosthetic systems.
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