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Real-time brain-machine interface in
non-human primates achieves high-velocity
prosthetic fingermovements using a shallow
feedforward neural network decoder

Matthew S. Willsey 1,2, Samuel R. Nason-Tomaszewski 2, Scott R. Ensel2,
Hisham Temmar 2, Matthew J. Mender 2, Joseph T. Costello 3,
Parag G. Patil1,2,4,5 & Cynthia A. Chestek 2,3,4,6,7

Despite the rapid progress and interest in brain-machine interfaces that
restore motor function, the performance of prosthetic fingers and limbs has
yet to mimic native function. The algorithm that converts brain signals to a
control signal for the prosthetic device is one of the limitations in achieving
rapid and realistic finger movements. To achieve more realistic finger move-
ments, we developed a shallow feed-forward neural network to decode real-
time two-degree-of-freedom finger movements in two adult male rhesus
macaques. Using a two-step training method, a recalibrated feedback
intention–trained (ReFIT) neural network is introduced to further improve
performance. In 7 days of testing across twoanimals, neural networkdecoders,
with higher-velocity andmorenatural appearingfingermovements, achieved a
36% increase in throughput over the ReFIT Kalman filter, which represents the
current standard. The neural network decoders introduced herein demon-
strate real-time decoding of continuous movements at a level superior to the
current state-of-the-art and could provide a starting point to using neural
networks for the development of more naturalistic brain-controlled
prostheses.

Brain–machine interfaces (BMIs) offer hope to the very high numbers
of Americans (~1.7%) with sensorimotor impairments1. To this end,
cortical BMIs have allowed human patients using brain-controlled
robot arms to perform a variety ofmotor tasks such as bringing a drink
to the mouth2 or stacking cups3. Motor decoding algorithms are
required to convert brain signals into a control signal, usually with
position and velocity updates, for the prosthetic device. Despite the
potentially non-linear relationship between neural activity and motor
movements4,5, linear algorithms—including ridge regression, Kalman

filtering, and Poisson processes—represent state-of-the-art perfor-
mance in motor decoding2,6–8. Even with the rapid progress, many
recognize that further developments are necessary to restore quick
and naturalistic movements2.

Some gains in performance have already been achieved by adding
non-linearities to classic linear decoders to leverage the likely non-
linear relationship between neural activity and motor movements. For
example, since the neural activity is markedly different when moving
compared to stationary postures, decoders have been introduced to
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move a prosthesis only when the desire to move is detected4,7,9. To
leverage the non-linear relationship between kinematics and motor
cortex neural activity, the classic Kalman filter has been adapted by
expanding its state space10 or with Gaussian mixture models11 so that
the algorithm can adopt different linear relationships in different
movement contexts. In a particularly novel implementation, Sachs
et al.12 implemented a weighted combination of two Wiener filters
trained for either fast movements or near-zero velocities so that con-
tinuously decoded velocities largely draw upon the fastWiener filter at
the beginning of the trial and the slow-movement filter as the cursor
approaches the target. However, for many of these approaches, per-
formance is improved only for very specific tasks, and a general-
purpose nonlinear approach is lacking.

Artificial neural network decoders, with their capability to model
complex non-linear relationships, have long been thought to hold
tremendous promise for brain-machine interfaces. They may ulti-
mately also represent the most biomimetic motor decoder to trans-
form motor cortex activity into realistic motor movements. However,
early neural network decoders, prior to recent advancements in
hardware, toolboxes, and training methods, were not found to
improve performance over standard linear methods when decoding
continuous motor movements13,14. Many advanced techniques
employing recurrent neural networks and variational inference tech-
niques show great promise for predicting prosthetic kinematics from
brain signals (in offline testing). However, these techniques are often
employed to perform classification15, as opposed to continuousmotor
decoding, and are not used in real-time control of prosthetic devices
(in online testing), likely because of the computational complexity16,17.
Sussillo et al.18, however, did demonstrate real-time control of a com-
puter cursor with a recurrent neural network in a non-human primate
implantedwithmotor cortex arrays. However, this did not outperform
a ReFIT Kalman filter in the same animals6,18. George et al.19 demon-
strated control of hand and finger movements in human amputees
with peripheral nerve interfaces using a convolutional neural network
but again did not outperform a linear Kalman filter.

In this work, we demonstrate a ReFIT neural network for decoding
brain activity to control random and continuous two-degrees-of-
freedom movements in real time using Utah arrays in rhesus maca-
ques. The ReFIT neural network is compared with the ReFIT Kalman
filter, which we use to represent the current state-of-the-art in linear
decoders. The ReFIT Kalman filter, conceptually similar to othermulti-
stage training/calibration procedures20,21, is a two-step training process
that first computes the weights of a classic Kalman filter and then
modifies the weights when the prosthesis direction is not toward the
actual target6.

In this study, we find that the ReFIT neural network decoder
substantially outperforms our previous implementation of the ReFIT
Kalman filter22–24 with >60% increase in throughput by utilizing high-
velocity movements without compromising the ability to stop. The
decision to explore shallow-layer artificial networks was inspired by
the biological motor pathway from the pre-central gyrus to the spinal
cord. These artificial neural networks may be a bridge toward more
sophisticated anddeeper neural network decoders and eventually lead
to improved high-velocity, naturalistic robotic prostheses.

Results
Two adult male rhesus macaques were implanted with Utah arrays
(Blackrock Microsystems, Salt Lake City, Utah) in the hand area of the
primary motor cortex (M1), as shown in Fig. 1a. The macaques were
trained to sit in a chair, andperforma finger target task inwhich a hand
manipulandum was used to control virtual fingers on a computer
screen in front of the animal. During online BMI experiments, spike-
band power (SBP) was used as the neural feature. SBP is the time-
averaged power in the 300–1000Hz frequency band that provides a
high signal-to-noise ratio correlate of the dominant single-unit spiking

rate and usually outperforms threshold crossings as a feature25. A two-
effector finger task was previously developed by Nason et al.23, where
the monkeys used two individual finger groups to acquire simulta-
neous targets along a one-dimensional arc. Although there are two
degrees of freedom in this task, similar to two-dimensional cursor
tasks, the animal must track two independent fingers, and the under-
lying neural mechanism may be inherently different than the hypo-
thesized cosine tuning of the cursor task23. Monkey N used his index
(D2) finger individually and his middle-ring-small (D3-5) fingers as a
group, and Monkey W used D2 and D3 as one group and D4 and D5 as
the second group. Unlike the previous task using center-out targets,
where targets appeared in pre-defined positions23, task difficulty was
increased by placing targets at random positions within the one-
dimensional active range of motion of each finger group. Further
specifics of the task are available in the Methods. After a 400-trial
calibration task, a decoder was trained to predict the velocity of both
finger groups, as shown in Fig. 1b. We have recently demonstrated
online real-time decoding of these 2 degrees of freedom using a ReFIT
Kalman filter23, and primarily compare our algorithm to that approach.

Offline analysis of the neural network architecture
Limited computational complexity was a design goal for the neural
network to allow same-day training and testing. As most online deco-
ders incorporate recent time history2,3, the neural network was
designed so that an initial time-feature layer constructed 16-time fea-
tures per electrode from the preceding 150ms of SBP (time feature
layer in Fig. 1c). These time features were then input into 4 fully con-
nected layers, where the first three output to a rectified linear unit
(ReLU) activating function and the final layer outputs a velocity for
each finger group. The number of fully connected layers and output
time features were chosen to achieve a near-maximal correlation
coefficient in offline performance using 400 trials of training data. As
can be seen in Fig. 2a, increasing the number of neurons in hidden
layers beyond 256 and the number of fully connected layers beyond 4
did not substantially improve the offline correlation. While these
numbers of layers and hidden neuronswere close to optimal given our
amount of training data (400 trials), which allowed networks to be
trained and tested on the same day,more training datawould allow for
larger neural network algorithms, as shown in Fig. 2a. On the other
hand, less training data might suggest smaller networks. Furthermore,
increasing the number of time features beyond 16 (Fig. 2b) also did not
substantially improve the offline correlation. For notational simplicity,
the neural network in Fig. 1c is abbreviated as NN.

While the primary endpoint of our offline analysis was to compare
our final neural network (NN in Fig. 1c) with the Kalman filter, we also
wanted to understand the impact on the performanceof the individual
network components, including the time feature input and a number
of layers, assessed through an offline analysis based on 3 days of
recorded spike-band power for each monkey during manipulandum-
controlled finger task, where algorithms were trained and tested on
the same day. Illustrative examples of predicted versus actual finger
velocities for Monkey N using the manipulandum are given for neural
networks of increasing complexity: 2 layers, 2 layers with time history,
4 layers, and 4 layerswith time history (Fig. 2c). The correlation of each
neural network decoder relative to the Kalman filter correlation is
given in Fig. 2d by combining both fingers over all days for each
monkey. The offline Kalman filter correlation averaged 0.59 ± 0.01 for
Monkey N and 0.50± 0.02 for Monkey W.

The architectural features that improved offline correlation were
the inclusion of time history and deeper networks. Correlations
between predicted and actual movements are shown in Table 1 for a
variety of comparisons. Our analysis included both a 2-layer network
with and without regularization (i.e., batch normalization and drop-
out), which showed that these techniques increased the correlation
across both animals (P < 10−5). Moving from a 2-layer to a 4-layer
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network also improved offline performance (P = 2.6 × 10−3) by 0.07 in
MonkeyN and0.04 inMonkeyW. The benefit of including time history
is evaluated by comparing the 2-layer network with and without time
history, which increases the correlation (P < 10−5) by 0.09 in Monkey N
and 0.08 in Monkey W.

We also performed an offline analysis to compare the correlation
for the 4-layer networkwith timehistory (NN in Fig. 1c)with theKalman
filter. When doing so, NN also achieved a higher offline correlation by
0.08 inMonkey N (P = 3.6 × 10−4) and by 0.04 in MonkeyW (P =0.016).
The total performance comparisons are summarized in Table 1. As a
final control, to ensure that the offline dimensionality reduction ben-
efit of the NN over KF is not derived entirely from the additional time
features, we compared NN with a classic Kalman filter with the same
number of time-lagged features (a total of 3-time bins). Across the
6 days in both monkeys, NN maintained a 0.035 ± 0.01 advantage in a
correlation coefficient (6%) over the Kalman filter (P = 1.9 × 10−3).

Neural network decoder outperforms ReFIT Kalman filter
decoder in real-time tests
In two non-human primates (NHP), Monkeys N andW, neural network
decoders outperformed a ReFIT Kalman filter (RK) during real-time
(online) testing, and the performance results are summarized in
Table 2. In Monkey N, a neural network decoder outperformed the RK
13 mos after implantation in 2 days of testing over 1080 total trials,

regardless of which algorithm was used first. The NN decoder
improved the throughput over the RK by 26% with 2.15 ± 0.05 bits
per second (bps) for the NN and 1.70 ±0.03 bps for RK (P < 10−5). The
acquisition time was lower at 1240 ± 40ms for the NN and
1550± 40ms for the RK (P < 10−5). NN had 3/543 unsuccessful trials
while RK had 1/537 unsuccessful trials. In Monkey W, NN and RK
decoders were compared 2 mos after implantation on one-day testing
over 412 trials. As graphically depicted in Fig. 3a, the NN decoder
improved the throughput over the RK by 46%, with 1.23 ± 0.09 bps for
the NN and 0.84± 0.04 bps for RK (P < 10−5). The acquisition time was
lower at 2680 ± 160ms for NN and 3310 ± 130ms for RK (P < 2.5 × 10−3).
NN had 26/133 unsuccessful trials while RK had 113/279 unsuccessful
trials. Figure 3a illustrates the throughput of each trial and the mean
value for each run.

ReFITneural networkdecoderoutperformsboth theoriginalNN
and RK decoders
The ReFIT innovation was applied to the neural network in a similar
manner as it was used with the Kalman filter. Essentially, after com-
pleting trials using the NN decoder, the NN learned weights were fur-
ther updated whenever the predicted finger direction was oriented
away from the true targets, as described in the Methods. The ReFIT
neural network (RN) decoder improvedperformance across allmetrics
when compared with the original NN in both monkeys (illustrated in

Fig. 1 | Neural network velocity decoder. a Image of Utah array implants for
Monkeys N (left) and W (right). In Monkey N, two split Utah arrays were implanted
in theprimarymotor cortex immediately anterior to the central sulcus anddenoted
with asterisks (*). The array in the primary somatosensory cortex was not used in
this analysis. In Monkey W, two 96-channel arrays were implanted and the analysis
herein uses the lateral array. b Experimental setup. The NHP is controlling the
virtual finger with the hand manipulandum in manipulandum-control mode or
using spike-band power (SBP) to control the virtual finger in brain-control mode.
c NN architecture. The network consists of five layers. The input to the network is
YIN which is a EN × 3 datamatrix that corresponds to the number of input electrodes
and the 3 previous 50-ms time bins. The time feature layer converts the last three
50-ms time bins for all the electrodes into 16 learned time features for each elec-
trode. The equation representing the operation is given above the graphical

description of the layer. The arrow indicates that the elements undergo batch
normalization and pass through a ReLU function and are then flattened to an
16EN × 1 array. The remaining four layers are fully connected layers with an asso-
ciated weight matrix, denoted by W. The first three layers consist of 256 hidden
neurons and process the hidden neuron output first with 50% dropout, then batch
normalization, and finally with a ReLU function. The fourth and final fully con-
nected layer, FC-Layer 4, has two neurons – that are normalized—and represents
the final velocity estimates of the two fingers, v̂1 and v̂2. Panel b was adapted from
Vaskov AK, Irwin ZT, Nason SR, Vu PP, Nu CS, Bullard AJ, Hill M, North N, Patil PG
andChestek CA (2018) Cortical Decoding of Individual Finger GroupMotionsUsing
ReFIT Kalman Filter. Front. Neurosci. 12:751. doi: 10.3389/fnins.2018.00751 and
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/); “spikes”
replaced with SBP.
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Fig. 3b and Table 2). These tests for Monkey N were conducted at 19
mos post-implantation, and the decoding performance of all decoders
had declined from earlier tests at 13 mos.

In Monkey N, who was capable of running a large number of
consistent trials in 1 day, RN was compared directly with RK 19 mos
after implantation in 2 days of testing with 1351 total trials (Fig. 3c and

Table 2). RN improved the throughput over the RK by 62%, with
2.29 ±0.05 bps for the RN and 1.41 ± 0.03 bps for RK (P < 10−5). As
illustrated in Fig. 3c, RN achieved a higher throughput on each day
(P < 10−5 for each day) regardless of which algorithm was used first.
Average performance of each decoder for the random finger task is
illustrated in Supplementary Movies 1 and 2. The acquisition time was
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1270 ± 30ms for the RN and 1940 ± 50ms for the RK (P < 10−5). There
were no unsuccessful trials (0/737) using the RN and 55/614 unsuc-
cessful trials with the RK. Representative raw finger tracings are
depicted in Fig. 3d for the RK and in Fig. 3e for the RN anddepict a time
segment with a throughput equivalent to the average throughput over
both days. The tracings illustrate the higher target acquisition rate for
the RN (30 targets in 50 s) compared to the RK (21 targets in 50 s). A
graphical illustration for a data collection timeline is given in Fig. 3f,
and data are summarized in Table 2.

Neural network decoders allowhigher velocity decodes than the
Kalman filter
To better understand why the RN outperformed the RK decoder, the
mean velocity over all the successful trials was computed for each
decoder for both monkeys. As seen in Fig. 4a, b, virtual fingers con-
trolled by theRNandNNdecoders achieved higher peak velocities and
were more responsive for both monkeys than when the virtual fingers
were controlled by the RK decoder. ForMonkey N (Fig. 4e), the time to
themean velocity peakwas 300ms for RN, 350ms for NN, and 450ms
for RK. The peak of the averaged velocity was 1.35 ± 0.03 u/s for RN,
1.00 ± 0.03 u/s for NN, and 0.55 ± 0.02 u/s for RK, where u denotes
arbitraryunits such that 1was fullflexion and0was a full extension. For
Monkey W (Fig. 4a), the time to peak was 350ms for RN, 400ms for
NN, and 800ms for RK. The peak average velocity was 0.94 ±0.04 u/s
for RN, 0.76 ±0.04 u/s for NN, and0.39 ±0.04 for RKu/s. Thus, in both
monkeys, the peak value of the mean velocity improved with RN and
NN compared with the standard RK decoder (P < 10−5 for both mon-
keys). Thehigh velocities achievedusingRNare illustrated for a center-
out task in Supplementary Movie 3.

To ensure the NN does not achieve high-velocity decodes at the
expense of low-velocity decoding accuracy, which is important for
stopping the prosthesis, the predicted velocity as a function of the true
velocity was compared for the NN and Kalman filter (KF) in an
offline analysis (graphically shown in Fig. 4b). The predicted velocity
on the vertical axis is scaled so thatwhen the true velocity is at zero, the
standard deviation of the predicted velocity equals 1/2. In the high-
velocity range (>1 u/s), the decoded NN velocity averages 157 ± 3% of

the KF velocity for Monkey N and 122 ± 2% for Monkey W. Thus, after
accounting for decoder performance at low velocities, the range of
velocities that can be achieved is higher for the NN than the KF. As
shown in the online analysis, higher velocities improved the perfor-
mance of NN decoders.

ReFIT neural network decoder outperforms optimized RK
decoder
Our implementation of the ReFIT Kalman filter for finger control uti-
lizes a physiological lag and does not include hyper-parameter tuning
(i.e., gain and smoothing parameters)22–24. Other work suggests RK
performance can be improved without lag (providing the RK updates
to the virtualfingers without delay)26 and by optimizing the online gain
and smoothing parameters for RK27. Furthermore, practicing with
other linear decoders has also been found to improve performance13.
Therefore, we optimized the Kalman filter in each of these areas, as in
control tests described in “Optimizing the lag, gain, and scaling factors
for real-time tests.” Hyperparameter tuning increased throughput by
3.6% and average peak finger velocity by 16% and transitioning to zero-
lag increased throughput by 16% and peak velocity by 13%. Using this
optimized RK, RKopt, with zero-lag, hyper-parameter tuning, and
allowing for abundant practice, we then directly comparedRKopt to RN
in 2 days of testing (1164 trials) at 29 mos post-implantation with
Monkey N, using the same protocol as used above to compare RK and
RN. In these tests, the throughput of RN of 2.41 ± 0.05 bps remained
greater than that of RKopt at 2.12 ± 0.05 bps (P = 1.3 × 10−5). RN’s peak
velocity of 1.29 ±0.03 also remained greater than RK’s peak velocity of
0.89 ± 0.02 u/s (P < 10−5).

It is unlikely that animal practice caused the improvement of RN
over RK because the animal has practiced more heavily with RK than
RN. Between testing at 19 mos. post-implantation and these control
tests at 29 mos. post-implantation, Mky N used a BMI decoder on
143 days of experiments unrelated to this work. Of these days, the
Kalman filter was used in 124 days (87%) while the neural network
decoders were used in only 28 days (20%).

Neural network merges decoders optimized for positive and
negative velocities
Due to the network architecture itself, each node of the final hidden
layer contributes either a positive or a negative velocity to the final
prosthetic finger velocity. We explored whether this itself provides an
example of how the fit is improved for different movement contexts,
i.e. positive and negative velocities. Specifically, for finger 1, the sumof
the product ofNk andW4

(1,k), overall k, determine v̂1, whereNk is the kth
node of the final hidden layer andW4

(1,k) represents the learnedweights
(shown in Fig. 5a). Since eachNk is the output of the ReLU function, Nk

is necessarily greater than or equal to zero. Thus, the nodal contribu-
tion of the kth node, Nk W4

(1,k), can be either positive (if W4
(1,k) > 0) or

negative (W4
(1,k) < 0)—but not both positive and negative.

The nodal contributions of positive and negative nodes during
day 1 for Monkey N are illustrated in Fig. 5b for positive velocities

Fig. 2 | Neural network offline analyses. a Heat map illustrating the offline cor-
relation (Corr.) between the number of fully connected layers versus the number of
hidden neurons per layer for Monkeys N (left) and W (right) for NN in Fig. 1c. The
three smaller maps on the right illustrate using a different day with a variety of
training trials. b The correlation during offline training for Monkeys N and W as a
function of the number of learned time features in the output from the time-history
layer of Fig. 1c. c Examples comparing actual velocity (gray) and decoded velocity
for linear decoders (red) and neural network decoders (blue) during 1 day of
manipulandum-control tasks for Monkey N. The Y-axis is normalized by the stan-
dard deviation of actual velocities during the entire run. dMean (and SEM) offline
correlationdifference between one of the neural networkdecoders and theKalman
filter, i.e., correlation of neural network decoder minus correlation of the Kalman
filter. The circles denote the mean for Monkey N over both fingers over 3 days

(n = 6 samples), and the triangles denote the mean for Monkey W over two fingers
over 3 days (n = 6 samples). The individual samples are denoted by “+”marks. The
primary endpoint of this analysis is to compare the offline correlation of the 4-layer
neural network with time history (NN in Fig. 1c) with the Kalman filter. The P-values
are listed and calculated from a one-sample, two-tailed t-test. Asterisks denote this
statistical significance in both animals. 2L No Reg = 2-layer neural network without
any regularization (i.e., batch norm or dropout); 2L 2-layer neural network, 2L w/
Time 2-layer neural network with a preceding time feature layer; 4L 4-layer neural
network, 4L w/Time 4-layer neural network with a preceding time feature layer.
Asterisks (*) denote statistically significant differences between the correlation of
the neural network decoder and the Kalman filter. Source data are provided as a
Source Data file.

Table 1 | Offline performance comparing Kalman filter and
neural network (NN) decoders

Decoder Correlation

Monkey N Monkey W

Kalman filter 0.59 ±0.01 0.50 ±0.02

2-layer NN (no regularization) 0.44 ±0.02 0.40 ±0.02

2-layer NN 0.55 ± 0.02 0.44 ±0.02

4-layer NN 0.61 ± 0.01 0.48 ±0.02

2-layer NN with time history 0.64 ±0.01 0.52 ± 0.02

4-layer NN with time history 0.67 ± 0.01 0.54 ±0.02
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(v1 >σ), negative velocities (v1 < σ), and near-zero velocities (−σ/
4 < v1 < σ/4). During positive velocities, the final estimate, v̂1, of v1 is
dominated by positive nodes, which is illustrated with the dark blue
line that depicts much higher nodal contributions for positive than
negative nodes. The same is true of negative nodes during negative
velocities. This trend is confirmed at a population level for both
monkeys in Fig. 5c, where positive nodes dominate negative nodes at
positive velocities and vice versa for negative velocities. Thus, the NN
decoder is capable of optimizing for positive velocities by learning the
weights of positive nodes and optimizing for negative velocities
through the weights of negative nodes.

To understand whether the network is improving on the Kalman
filter via separating movement contexts, we created an idealized
decoder combining two separately trained Kalman filters: one for
positive velocities (KF+) and one for negative velocities (KF−), as illu-
strated in Fig. 6a. The decoder in Fig. 6a assumes a perfect classifier
that correctly chooses either KF+ or KF− depending on whether the
true velocities are positive or negative. As can be seen for both mon-
keys in Fig. 6b, c, KF+ and KF− achieve higher velocity magnitudes
closer to theNNdecoder, andunlike the original Kalmanfilter, covers a
wider range of velocities. This suggests that the NN allows for optimal
fits within both of these contexts without overt switching.

Discussion
In 7 days of testing across two animals, neural network decoders (NN,
RN), with higher-velocity and more natural appearing finger move-
ments, achieved a 36% increase in throughput over the ReFIT Kalman
filter (RK, RKopt), with RK representing the current standard in finger
control22–24. Even though not routinely performed in practice25,28–30,
optimizing the Kalman filter by allowing for 10 months of

disproportionate practice and even empirically calibrating parameters
of RK did not overcome the performance advantage of RN over RK,
which maintained a substantial advantage of 45% in peak finger velo-
city and 14% advantage in throughput. In Monkey N, RN was directly
compared against RK/RKopt across >2500 trials, and RN had higher
throughputs than RK/RKopt every day. Also, in 6 days of testing across
Monkeys N and W and >3600 trials, RN was indirectly compared
against RK by first showing higher throughput of NN over RK on each
day and then showing superior throughput of RN over NN (i.e., RN >
NN, NN >RK). This improvement was driven by more accurately
decoding higher velocities because the neural network better accesses
high velocities and more accurately maps neural activity to intended
finger velocities. More accurate high-velocity decodes were demon-
strated in both online and offline analyses and may arise by separately
training weights for either positive or negative velocities. The offline
correlation analysis showing higher correlations for the neural net-
work demonstrates, in both animals, that the neural network may
better map neural activity to finger kinematics. Combined, these
advantages may lead to more robust performance in various real-
life tasks.

Neural network algorithms are loosely inspired by biological
neural networks, and their use in BMIs has been explored for more
than 20 years13,14. Decoding algorithms can be tested in open-loop or
closed-loop mode. In open-loop testing, neural activity is obtained
when the able-bodied animal performs a finger task with the hand
manipulandum. From this pre-recorded neural activity, the position/
velocity of the fingers is predicted and compared with the true finger
position/velocity from the pre-recorded task, and many sophisticated
non-linear and neural network architectures are known to show tre-
mendouspromiseandevenoutperform linear algorithms inopen-loop

Table 2 | Real-timeperformance comparison betweenReFIT neural network (RN), neural network (NN), andReFITKalmanfilter
(RK) decoders

Monkey N Monkey W

RK NN RN RK NN RN

NN vs. RK

Throughput (bps) 1.70 ± 0.04 2.15 ± 0.05 0.84 ±0.04 1.23 ± 0.09

Acquisition time (ms) 1550± 40 1240 ± 40 3310± 130 2680 ± 160

Time to target (ms) 1110 ± 30 950 ± 20 2410 ± 110 1680± 110

Dwell time (ms) 440 ± 30 290 ± 20 790± 100 1000 ± 120

Successful (total) trials 540 (543) 536 (537) 113 (279) 107 (133)

Number of Test days 2 1

Mos. post-implantation 13 3

RN vs. NN

Throughput (bps) 1.51 ± 0.04 2.15 ± 0.05 1.20 ±0.06 1.43 ± 0.05

Acquisition time (ms) 1880± 50 1320 ± 30 2610 ± 120 2220± 70

Time to target (ms) 1230 ± 30 840± 20 1740 ± 80 1430 ± 50

Dwell time (ms) 650 ± 30 480± 30 860± 90 780 ± 60

Successful (total) trials 616 (629) 772 (772) 185 (237) 441 (483)

Number of Test days 2 1

Mos. post-implantation 19 3

RN vs. RK

Throughput (bps) 1.41 ± 0.03 2.29 ±0.05

Acquisition time (ms) 1940 ± 50 1270 ± 30

Time to target (ms) 1330 ± 30 790 ± 10

Dwell time (ms) 610 ± 40 470 ± 30

Successful (total) trials 559 (614) 737 (737)

Number of Test days 2

Mos. post-implantation 19

Of note, there was a gap of 6 months in data collection between NN vs. RK and other tests with Monkey N because of a lab shutdown as a result of the COVID-19 pandemic.
bps bits per second.
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mode16,17,31,32. In closed-loop mode, the decoding algorithm interprets
neural activity in real-time and updates the position and velocity of the
prosthesis. The closed-loop problem can be subdivided into two
applications: classification and continuous motor decoding. In classi-
fication, neural activity is classified into a predefined set of prostheses
positions, and in continuous decoding, neural activity is decoded onto

a continuous range of positions/velocities that allow for arbitrary
movements beyond a predefined set. Neural networks have been used
previously in closed-loop classification15,33,34; however, in closed-loop
continuous motor decoding, many attempts to improve performance
over linear algorithms have been unsuccessful13,14,18,19. Sussillo et al.30,
which may be the most state-of-the-art demonstration of a neural

Fig. 3 | RN decoder outperforms RK during real-time tests. Throughput popu-
lation data comparing decoders. For each run, the throughput is indicated with a
dot, and the number of trials is printed above the data for each run. The few values
greater than 5 bps are not shown. The black bars represent themean and S.E.M. The
manipulandum-control runs are indicated with “M” (magenta). a Throughput
population data comparing the NN decoder (cyan) and the RK decoder (red) for
2 days of testing withMonkey N and 1 day of testing withMonkeyW. b Throughput
population data comparing the NN decoder (cyan) and RN decoder (blue) for
2 days of testing withMonkey N and 1 day of testing with MonkeyW. c Throughput
population data comparing the RN decoder (blue) and the RK decoder (red) for

2 days of testing with Monkey N. d, e Raw decoded position using the RK (red; d)
and RN (blue; e) for the index finger (top pane) andmiddle-ring-small (MRS) fingers
inMonkeyN,whichare locked together (bottompane). The targets are represented
as the shaded box. The x-axis denotes the elapsed time, 50 s, and the y-axis denotes
the proportion of finger extension, i.e., 0 is fully flexed and 1 is fully extended.
These time windows are representative of the average decoding performance as
measuredby throughput. fA timeline for data collection forMonkeys N andW. The
data collection for Monkey N was interrupted by the COVID-19 lab shutdown. M
manipulandum-control, NN neural network, RK ReFIT Kalman filter, RN ReFIT
neural network, BPS bits per second. Source data are provided as a SourceData file.
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network algorithm performing continuous online decoding, uses a
recurrent neural network to demonstrate that day-to-day recording
instabilities can be mitigated with the neural network. Although the
RNN is compared with a ReFIT Kalman filter showing a small benefit,
the neural network is allowed to train on substantially more data, and
the Kalman filter implementation may not have been optimized
through hyper-parameter tuning and animal practice.

Our approach differs from previous approachesmainly by using a
shallow network architecture and the ReFIT innovation6,24 to improve
training data. Additionally, we utilize recently developed regulariza-
tion techniques to prevent overfitting (i.e., batch normalization and
dropout)35–37 and also incorporate 150-ms time history of spiking band

power (SBP) as input to the decoder instead of only one point in time.
The shallow network architecture of 1 time-feature layer and 4 fully
connected layers allows for the roughly 5 × 105 learned parameters to
be trainedwith only 400 trials of same-day training data in about 1min.
In contrast, recurrent neural network architectures have combined
training data across multiple days15,16, and when implemented as con-
tinuous motor decoders may be too complex to run in real-time. An
additional benefit of shallow feed-forward networks is that computing
the velocity in real-time mode introduces only a 1–2ms lag. Thus,
through the use of a shallow network, limitations typical of more
computationally expensive architectures are avoided. However, simi-
lar to other reports on neural networks16,30, even this shallow neural

Fig. 5 | Neural network decoder functions as a weighted combination of a
positive andnegative velocity decoder. a Final neural network layer that converts
256 nodes into 2 finger velocities by matrix multiplication by a matrixW4

(i,j) of size
256 × 2, where i denotes the row and j denotes the column value. The value of the
256 nodes, Nk, of the final layer is all positive given that they are derived from the
output of the preceding ReLU function. For finger 1, the kth node was considered a
“positive node” if it contributes to positive—not negative—velocities and occurs
whenW4

(k,1) > 0. “Negative nodes” contribute negative—not positive—velocities
whenW4

(k,1) < 0. Thenodal contribution from the kth node is defined asNkW4
(k,1) and

is the value of the output at the dashed line. b Example illustration of the mean
nodal contribution from positive and negative nodes when the true velocity is
positive (dark blue), negative (light blue), and near zero (gray) during 1 day of
testing withMonkeyN. Positive nodes aremuch higher than negative nodes during

positive velocities, while negative nodes have a higher magnitude than positive
nodes during negative velocities. Positive velocity is defined as v1 > σ, negative
velocity is defined as v1 < −σ, and velocities near zero are defined as −σ/4 < v1 < σ/4,
where σ is the standard deviation of true finger velocity. c The nodal contribution
during positive, negative, and near-zero true velocities illustrates that positive
nodes largely determine the numerical value of positive velocities and negative
nodes largely determine the value during negative velocities. The nodal contribu-
tion is averaged across both fingers during the 3 offline days for both Monkeys N
and W. Thus, three operating regimes consisting of a decoder during positive
velocities based on positive nodes, a decoder during negative velocities based on
negative nodes, and a decoder using positive and negative nodes during velocities
near zero. The dots indicate the mean and the error bars indicate the standard
deviation. Source data are provided as a Source Data file.

Fig. 4 | Higher decoded velocities using neural network decoders. a Online
analysis. Virtual finger velocity forMonkeyN (left pane) andMonkeyW (right pane)
for RN (blue), NN (cyan), RK (red), andmanipulandumcontrol (magenta). The plots
indicate that the neural network decoders achieve higher peak velocities in real-
time tests. In Monkey N, the RN, RK, and manipulandum -control data are taken
from the days comparing RN vs. RK, while NN velocities were derived from the day
comparingNNandRK. InMonkeyW,RNdatawerederived from the day comparing
RN vs. NN. RK was derived from the day comparing NN vs. RK. Manip-
ulandum control and NN were derived from both days. The solid line indicates the
mean value and the shaded region denotes the SEM. The shaded line tightly sur-
rounds themean, making these difficult to distinguish. If the trial was completed in

<2000ms, a velocity of zero was assigned extending from trial completion to
2000ms. The unit, u, denotes arbitrary distance such that 1 was full flexion and 0
full extensions. b Offline analysis of true and predicted velocities for Monkey N
(left) and Monkey W (right). The NN (blue) decodes higher velocities than the KF
(red). The predicted velocity is normalized at a true velocity of zero so that one
positive standard deviation of predicted velocities for both NN and KF is normal-
ized to 0.5. The solid line indicates the mean value and the shaded region around
denotes the SEM. The larger shaded region around themean denotes the variance.
NN neural network, RK ReFIT Kalman filter, RN ReFIT neural network, KF Kalman
filter. Source data are provided as a Source Data file.
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network architecture may potentially achieve a performance boost
from transfer learning if trained on previous days, which could reduce
same-day training trials or may allow for deeper networks to be re-
calibrated with a small amount of same-day data.

Incorporating a two-step, intention-based, re-training step is the
fundamental innovation in improving the ReFIT over the classic velo-
city Kalman filter6 and appears to have a similar positive effect on the
NN. The intention-based retraining stepwas already known to improve
finger decoding for a Kalman filter during center-out tasks24. Similar to
the substantial improvement seen in the ReFIT Kalman filter6,
retraining the ReFIT neural network resulted in a substantial 35%
improvement (3 days, 2 animals) in performance over the original
neural network decoder. Despite the profound benefit of ReFIT, it is
certainly possible that more sophisticated algorithms may be devel-
oped to better exploit transfer learning and allow for adaptive training
algorithms, which may eventually reduce the training time and need
for the ReFIT algorithm. However, further studies will be needed to
characterize this tradeoff.

By training the neural network, the learned weights for either
positive or negative nodes appear to be optimized for either the
positive or negative velocity range. Similar to our results, Sachs et al.12

showed that splitting the full velocity range into intervals subserved by
separate Wiener filter decoders fine-tuned for either high or low
velocities improved brain-machine interfaces for cursor control.
Additionally, Kao et al.7 improved performance by 4.2–13.9% over the
ReFIT Kalman filter using a hiddenMarkovmodel to enablemovement
only when the decoder is in a “movement state,” as neural activity is
known to be different in movement and postural states4. The neural
network architecture may be better able to discover these contexts
without explicit classifiers or supervised training.

The variation of decoded velocities of the neural network appears
to more closely mimic the range of velocities seen in native finger
movements. In a tantalizing hypothesis, the decoder’s naturalistic
movements may be related to its shallow architecture, which may
resemble true biological pathways. Specifically, there are only a few
synapses between the neurons in the motor cortex and the α-motor
neurons in the anterior horn of the spinal cord38. Although speculative,
neural network architectures may perform well partly because motor
cortex activity naturally controls the flexion and extension of antago-
nist muscle pairs. The neural network architecturemay readily decode
this flexion and extension into positive and negative velocities. Whe-
ther the similarity of neural network decoders to biological networks

leads to more naturalistic motor control of many more contexts and
simultaneousdegrees of freedomwasnot investigated in thiswork and
awaits further study.

As opposed to using our typical center-out finger task23, we
increased the difficulty to better challenge the decoders and elucidate
differences between two well-performing decoders. Although these
results could apply to a variety of real-world finger tasks, other tasks
and prostheses (i.e., robotic arms) were not explicitly tested. While
improvements in the Kalman filter implementation (including training
and re-training procedures) may increase its performance, the neural
network performance may also be further optimized in a similar way,
such as by including position information into the decoder, optimally
tuning its parameters, or by implementing it in a form similar to the
steady-state Kalman filter by merging historical velocity and current
updates (Eq. 2). Regardless, in online tests, the RNwas found across all
metrics to outperform RK, and offline tests confirmed a superior
dimensionality reduction (as measured by correlation coefficient) and
a higher dynamic range of predicted velocities.

A potential confounder of the improvement in using RN could be
that the animals are more motivated to use RN over RK. To mitigate
this confounder, the order of decoders used in online tests was
reversed in multiple days of testing so that the animal used RK before
RN. Additionally, animals had substantiallymore practicewith RK from
prior and parallel studies, which did not overcome the performance
improvements of RN. Finally, motivational or decoder preferences are
not applicable in offline testing where the animal controls virtual fin-
gers using a hand manipulandum. In these tests, we found the neural
network algorithm better predicts finger velocities and better models
higher velocities than the Kalman filter.

A piecewise implementation of the Kalman filter could con-
ceivably be used to achieve a similar range of predicted velocities but
would require a sophisticated and generalizable switching algorithm
to choose the appropriate Kalman filter. Furthermore, the neural net-
work algorithms could similarly be constructed for distinct velocity
ranges. Lastly, while the neural network does require increased com-
putational complexity, it was optimized for performance and not to
optimally trade off performance with computational complexity,
which could certainly be accomplished.

This neural network decoder outperforms a current state-of-the-art
motor decoder and achieves movements similar to naturalistic finger
control. The architecture resembles biologicalmotor pathways andmay
be amenable to further performance improvements.

Fig. 6 | Hypothetical decoder for idealizeddecoder composedof aKalmanfilter
for positive and negative velocities. a Block diagram of a hypothetical decoder
that uses two separate filters for positive finger velocities, v1 ≥0 and v2 ≥0, and
negative finger velocities, v1 < 0 and v2 < 0. The Kalman filter for positive velocities,
KF(+), was trained on velocities near zero and positive values (>−0.5σ), whereas the
Kalman filter for negative velocities, KF(−), was trained on mainly negative velo-
cities (<0.5σ). The ideal classifier is depicted only to illustrate the concept and was
not implemented. b, c True versus predicted velocity magnitude during 3 days of
manipulandum-control testing (3 days each for Monkeys N and W) for the neural

network decoder (blue), Kalman filter (red), KF(+) (magenta), and KF(−) (magenta).
The full-range Kalman filter predicted both positive and negative velocities, KF(+)
predicted only positive velocities, and KF(−) predictedonly negative velocities. The
magnitude estimated velocities of KF(+) and KF(−) are shown to be higher than
those of the full-range Kalman filter and illustrate that training and implementing
the Kalman filter over restricted ranges would allow for higher velocities (assuming
an ideal classifier). The solid line indicates the mean value and the shaded lines
indicated the S.E.M. Source data are provided as a Source Data file.
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Methods
Implantation procedure
The protocols herein were approved by the Institutional Animal Care
and Use Committee at the University of Michigan. Two adult male
rhesus macaques were implanted with Utah arrays (Blackrock Micro-
systems, Salt Lake City, Utah) in the primary motor cortex (M1). Under
general anesthesia and sterile conditions, a craniotomy was made and
M1was exposed using standard neurosurgical techniques. The arcuate
sulcus ofM1wasvisually identified, and the arraywasplacedwhere this
sulcus touches the motor cortex (Fig. 1a), which we have previously
used as a landmark of the hand area in rhesus macaques. The incision
was closed, and routine post-anesthesia care was administered.

Experimental setup and finger task
Both Monkeys N and W were trained to sit in a monkey chair (Crist
Instrument, http://www.cristinstrument.com), with their head secured
in customized titanium posts (Crist Instrument), while the Utah array
was connected to the Cerebus neural signal processor (NSP, Blackrock
Microsystems). The arms were secured in acrylic restraints. The hand
contralateral to the motor cortex implant was placed in a manip-
ulandum that translates finger position to a number between 0 (full
extension) and 1 (full flexion). The impedance of a bend sensor was
used to infer position and velocity. A computer monitor was in plain
sight for the NHP and depicted a large virtual hand (Fig. 1b). The virtual
finger could be controlled in either manipulandum-control mode or in
brain-control mode (i.e., brain signals converted to updates for the
virtual fingers). Brain-control mode is commonly denoted as either
real-time, closed-loop, or “online”mode.Manipulandum-controlmode
is often described as “offline”mode. The two-dimensionalfinger task is
identical to the task developed by Nason et al., except performed on
random instead of center-out targets23. The finger task required pla-
cing either the virtual index and/or ring finger on the target for 750ms
during training mode and 500ms during testing mode (testing vs.
training modes will be explained in a subsequent section). The target
size was 15% of the active range of motion. With target acquisition,
apple juice was automatically administered through a tube placed in
the animal’s mouth. During experiments, animals were left alone in a
dimly lit room and monitored on closed-circuit TV. They were free to
move their handswithin the acrylic restraints holding the arms, but the
head was rigidly secured with the titanium posts. During experiments,
the animals were cooperative and would participate in target acquisi-
tion. The animals would often move their hands during target acqui-
sition, even when in brain control mode.

Front-end processing
The Utah array was connected to the Cerebus NSP (Blackrock Micro-
systems) through a cable. Although 96 channels were available, we
accounted for changes inneuron count byonly including channels that
were not artifactual andhadshownmorphological neural spikes on the
day of experiments or on previous days, leaving 54–64 channels for
Monkey N and 50–53 channels for Monkey W. The Cerebus system
sampleddata at 30 kHz,filtered it to 300–1000Hz, down-sampled it to
2 kHz, then transmitted it to the xPC Target environment version
2012b (Mathworks, Natick, MA). The xPC Target computer took the
absolute valueof the incomingdata and then calculated each channel’s
mean in regular 50-ms time intervals. This binned value is referred to as
spike-band power. We have previously shown that this band is highly
correlated with and specific to the spiking rate of single units near the
recording electrode25. A 50-ms time bin is a typical value used in the
literature6.

Software architecture
A separate computerwith one 2070 superNVIDIAGPUs (NVIDIA, Santa
Clara, CA) was connected to the xPC. This computing box was called
the eXternal Graphic Processing Computer (xGPC). The xGPC

executed commands in Python (v3.7, https://www.python.org/) using
the PyTorch library (v1.4, https://pytorch.org/). Real-time performance
was guaranteed in the following fashion. The xPC transmitted data to
the xGPC with a timestamp and the xGPC calculated updates for the
virtual fingers from the inputs (for all decoders) and transmitted the
data back to the xPC along with the original timestamp. When the xPC
received the data packet, the packet was loggedwith a new timestamp.
Real-time performance was guaranteed given that the timestamp
received from xGPC (the original timestamp sent by xPC) was within
50ms of the current xPC timestamp and updates to the virtual fingers
occurred every 50-ms time bin. The xGPC and xPC were assembled
with the intention to use amuch deeper neural network thanwas used
in this work. The lag using this system with the neural network pre-
sented herein was only 1–2ms.

ReFIT Kalman filter
The ReFIT Kalman filter (RK) was implemented, as we have done
previously39, for two-finger groups. for use with two fingers, as sum-
marized by the equations below:

xt =

P1

P2

V 1

V2

1

2
6666664

3
7777775

ð1Þ
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In Eq. (1), the kinematic state variable, xt, is denoted and com-
posed of the finger group positions (P1 and P2) and velocities (V1 and
V2), and a value of 1 to account for the offset. The standard recursive
implementation of the Kalman filter is described by Eqs. (2) and (3)
where Kt is the Kalman gain (implemented without position
uncertainty24), ytdenotes the SBP of the electrode array, andCdenotes
the weights calculated via linear regression tomap kinematic variables
to the array of SBP. A in Eq. (4) is implemented to obey the physical
relationship between position and velocity where dt denotes the step
size. Channels without morphological spikes were not used.

The trained KF was then used to perform closed-loop motor
decoding. In closed-loop mode, the decoded position of the virtual
fingers was calculated by adding the product of velocity and time step
to the finger position at the previous time step. To train the RK, the
target position for each finger is mapped to a two-dimensional space
and the true velocity of each finger is scaled to be proportional to each
finger’s distance to the target while keeping the total velocity magni-
tude constant. This method of ReFIT was introduced by Nason et al.23

and was not found to be statistically different from the ReFIT method
in Vaskov et al.24, where thefinger velocitywasmodifiedbymultiplying
velocities by −1 when the velocity was oriented in the opposite direc-
tion as the target. The KF was then retrained using these new velocity
values (for details see Nason et al.23).

Optimal lag is commonly implemented in KFmotor decoders40 to
account for the physiologic lag between cortical activity and motor
movement41. Thus an optimal time lag, calculated to be one 50-ms bin
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for both Monkeys N and W, was applied when training and imple-
menting the KF, as detailed in previous work22,24. Control tests com-
paring zero and one 50-ms bin lag are provided below (see Section
“Optimizing the lag, gain, and scaling factors for real-time tests”).
Additionally, the Kalman filter can be implemented as a steady-state
Kalman filter with a gain and smoothing factor that can be optimized
for online tests. Our implementation generally does not tune these
parameters as the ReFIT training algorithm may determine near-
optimal values for these parameters42. To validate this simplification,
we compare our implementation of RK with one with optimal tuning
(see Section “Optimizing the lag, gain, and scaling factors for real-time
tests”). As will be explained below, we did compare RN with RKopt,
which uses zero lag and optimally determined gain/smoothing para-
meters, to ensure our results hold against a theoretically optimizedRK,
with the results presented in the section “ReFIT neural network
decoder outperforming optimized RK decoder” of Results.

To determine whether the Kalman filter could better predict the
high velocities if trained and used on restricted velocity ranges, we
conducted an offline analysis using “KF+” and “KF−.” KF+ was calcu-
lated with only positive and near-zero velocities, i.e., velocities greater
than −σ/2, and KF− was calculated with velocities less than σ/2. These
classic Kalman filters, as in Wu et al.40, were implemented with a Kal-
man gain with position uncertainty, a fully learnable Amatrix (Eq. (4)),
and physiologic lag (calculated on that day).

Neural network velocity decoder
The neural network velocity decoder was designed from preliminary
offline experiments that explored various network architectures. The
final network is given in Fig. 1c. Thefirst layerwas the time feature layer
that constructs time features from 150ms (three 50-ms bins) from the
input electrodes. This layer was implemented in Pytorch, using the
torch.nn.Conv1dmodule, i.e., as a one-dimensional convolution with a
kernel size of 1 (H=W= 1) and 3 input channels (neural network
channels, not electrode channels). Each channel corresponded to one
50-ms time bin. Although possible to construct a spatial convolution
across electrodes, this was not performed because the spacing
between electrodes was hypothesized to be distant relative to the size
of the neurons being recorded. The output of the time feature layer
provided 16 features per electrode and, when flattened, provided
output 16multiplied by the number of electrodes used as the output of
the time feature layer, which equals 1536 if all 96 electrodes are used.
These outputs then form the input to a series of fully connected layers.
Regularization for fully connected layers 1–3 included 50% dropout35

and batch normalization36. Fully connected layer 1 converted the out-
put channels of the time feature layer (up to 1536 in number if all 96
electrodes are used) to 256, and the remaining layers had 256 hidden
neurons. The sequence of the modules used as torch.nn.linear,
torch.nn.Dropout, torch.nn.BatchNorm1d, and then finally torch.nn.-
functional.relu. The final layer implemented a matrix multiplication
with torch.nn.linear to convert the 256 inputs to the two velocity
estimates. The output of the network was normalized to zero mean
and unit variance and roughly twenty times the magnitude of actual
velocity peaks. This normalization was discovered to converge more
quickly when training the RN than training without the normalization.
The output of the neural network was scaled by an unlearned gain
factor that equaled the averagemagnitude peaks of the actual velocity
divided by the average magnitude peaks of the predicted velocity. No
offsetwas applied to thefinal predicted velocity, leaving it a zero-mean
signal. A diagram of the final neural network is given in Fig. 1c.

Prior to training the neural network, a training data set was col-
lected in the manipulandum-control mode for roughly 400 trials with
randomly appearing targets. A subsequent 100 trials were also per-
formed and served as a validation set to ensure the network had
converged. This validation set was also used to calculate the gain as
described above. If there was a non-zero median, this was subtracted

as well to approximate a zero-mean signal. The SBP and velocity data
were assembled into data structures in Matlab (Mathworks). The data
were randomized in two ways. First, the time data were randomized
into batches of 64 × 3 time points: 64-time points with the corre-
sponding value at time delays of 0, 50, and 100ms. Second, a trian-
gular distribution of velocities was imposed on the training data
spanning the range of −4σ to 4σ, where σwas the standarddeviation of
the actual velocity. A total of 20,000 training samples were randomly
chosen to achieve this velocity distribution. This velocity redistribu-
tion was anecdotally observed to improve performance on the finger
task when the neural network was trained on a center-out finger task
that led to a “sticky finger” behavior, in which the finger would often
get close to but not quite all the way to the target. However, when the
neural network was trained on random targets, the velocity redis-
tribution was not observed to improve performance over non-
redistributed data, but we describe it here for completeness. This
redistribution of velocities was also used when training on random
finger targets so that the decoder could easily be generalized to other
training paradigms in the future.

In addition to the neural network used for online testing, several
other neural networks were used to understand how individual com-
ponents of the neural network affected offline performance. The net-
works included a network of only two layers and no regularization (no
batch normalization, dropout, or output normalization). There were
also regularized networks, including a 2-layer fully connected network
(256 hidden neurons) with and without a preceding time feature layer
(3 input channels for each electrode and 16 output channels), and a
4-layer fully connected network (256 neurons) with a time feature
layer. These networks included regularization and parameters similar
to Fig. 1c. The offline networkswere compared with the classic Kalman
filter (without the intention retraining step) and ridge linear regression
without time history and with a regularization constant of λ = 10−4.
During offline tests, algorithmswere trained only on the day they were
tested on.

When training the network for online decoding, the neural net-
workwas optimized over 3500 iterations using the Adamoptimization
algorithm43 (torch.optim.Adam) with a learning rate of 10-4, weight
decay of 10−2, and momentum of 0.9. Each iteration consisted of a
64 × 3 mini-batch (64 random time steps with 3 samples of 150ms of
time history). We attempted to use a relatively large learning rate as
larger learning rates provide additional regularization for the
network37. On one day for Monkey W, 3000 iterations were used. The
number of iterationswas determined for each network fromthe first of
three offline testing days and chosen so that the correlation between
actual and estimated velocity (on the testing set) did not significantly
change with additional training iterations (changes in correlation with
additional iterations on the order of ~0.01). When generating weights
for offline analysis, a learning weight of 2 × 10−5 allowed better com-
parisons between networks with different numbers of layers. Kaiming
initialization was used to initialize the weights of each layer44, and the
bias terms were initialized to zero. The dropout level used was 50%35.
On each day, a training set (~400 trials) and testing set (~100 trials)
were collected, and performance on a testing set was characterized by
the correlation of predicted and actual velocity.

When searching for the preferred number of layers, hidden neu-
rons, and output time features (Fig. 2a, b), performance was char-
acterized by the average of the maximum five correlations with the
testing set overall training iterations using 400 trials of training data
over three days for each animal. In this way, the optimal number of
training iterations did not need to be calculated for different-size
networks.

The weights for the ReFIT neural network were calculated by first
using the NN decoder in brain-control mode. A truth signal was then
constructed from the original NN output by flipping the velocity
direction whenever the estimated finger velocity was directed away
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from the target. Using this truth signal and the original neural network
output, 500 further iterations of the Adam optimization algorithm
were applied to further optimize the weights of the neural network.
The gain factor for the neural network was calculated in the same
manner as the original neural network except when comparing the NN
to RNover 2 days, where the gain factor used during brain controlwith
the NN was simply scaled by a factor of 0.75 on both days.

Testing protocols
Targets for thefingerswere not allowed tobe separatedby >50%of the
range. During training, the random targets spanned 100% of the finger
flexion/extension range, but during online decoding, only 95% of the
range was used. The Kalman filter was then used on a ~250 trial run
from which the ReFIT KF coefficients were calculated.

For Monkey N, 8 online testing days were conducted. Offline
testing was performed using manipulandum-control trials for 3 con-
secutive days. Two of these days were the manipulandum-control
training trials fromtheonline testing comparingNNandRKconducted
13mos post-implantation. An additional day ofmanipulandum-control
data at 13 mos post-implantation was also included. For Monkey W, 2
online testing days were conducted. The offline analysis included
manipulandum-control trials from 3 days at 2 mos post-implantation
that included the 2 online days and an additional day of
manipulandum-control trials. To reduce confounders when compar-
ing decoders for each monkey, decoders were compared in an alter-
nating lineup: either A-B-A or A-B-A-B testing. When decoders were
evaluated on the second day of testing, the order was reversed: B-A-B
or B-A-B-A. In 1 day for Monkey W, NN was compared with RN without
alternating the decoder. For Monkey N, the first 50 trials with each
decoder were discarded in the analysis. For Monkey W, only the first
trial was discarded as there were fewer total trials since W was less
motivated to complete trials. To visually illustrate the peak perfor-
mance of the RN on our typical center-out task23, one additional day
was included using the RN on this task. To prevent animal motivation
from confounding the analysis, the run was terminated if the animal
made no attempt to acquire targets. Only trials with targets that did
not overlap with the previous trial’s targets were included in the
analysis.

Performance assessment and statistical analysis
Data analysis was performed using computers with built-in code and
customized code in Matlab (Mathworks, Natick, MA) versions R2017a,
R2018a, PyCharm 2020–2022, and Python v3.7/v3.9, PyTorch
v1.5/v1.12.

Performance in online mode was characterized by Fitt’s law
throughput given below in Eq. (5), which accounts for both task diffi-
culty and the time needed for completion. The variable Dk is the dis-
tance of the kth virtual finger to the center of the kth target at the start
of the task, S is the target radius (equal in both fingers), and tacq is the
time to reach the target.

Throughput =

P
k log2 1 +

Dk�Sð Þ
2S

� �

tacq
ð5Þ

While the throughput was the primary performance metric,
acquisition times were also reported.

All velocities in the offline analyses were normalized by the stan-
dard deviation of the true velocity with 1 indicating the equivalent of
1 standarddeviation of the actual velocity. The timeplots depicting the
actual versus predicted velocity were selected fromone of the training
days to illustrate the results (Fig. 2a). The correlation for each decoder
was averaged over 2 fingers on 3 days (Fig. 2b). The plots of true versus
predicted velocity were calculated by binning the magnitude of the

actual velocity into bins of size 1.0 at intervals of 0.5 and averaging the
magnitude of the predicted velocity in each respective bin.

A value of α =0.05 was used for statistical significance. The cor-
relation coefficient was calculated with numpy.correlate and normal-
ized to vary between 0 and 1. The primary endpoint for this analysis
was whether the correlation of NN subtracted by the correlation of KF,
was greater than zero, which was evaluated with a one-sample, two-
tailed t-test (ttest.m). ANOVA post-hoc comparisons of each network
(anova1.m) are also included to compare the effectiveness of various
neural network features (i.e., network regularization, time history,
number of layers). Performance metrics during real-time tests,
including throughput and acquisition times, were compared with a
two-sample, two-sided t-test (ttest2.m). Performance metrics are
reported as mean value ± standard error of the mean (SEM).

Optimizing the lag, gain, and scaling factors for real-time tests
As explained above, we utilized physiologic lag similar to previous
studies40 in our implementation of RK for finger control22–24. Unless
otherwisementioned, our comparisons of RK and RNuseRKwith a 50-
ms bin lag. To evaluate the effect of a 50-ms bin lag, RK with a lag of
one 50-ms bin was compared to RK with a zero-lag implementation
(where the Kalman filter predictions update the virtual hand as soon as
they are available) in one day of testing over 273 trials with Monkey N.
The zero-lag RK improved throughput by 16% and peak average velo-
city by 13%.

The Kalman filter estimates of position and velocity can be sim-
plified (assuming a steady-state Kalman gain) as a weighted sumof two
components: the previous time step’s estimate of position/velocity
and the current time step’s estimate of position/velocity derived from
the intra-cortical array as shown below in Eq. (6)27.

�xt =α�xt�1 + 1� αð ÞβD�yt ð6Þ

In Eq. (6), �xt denotes a 2FN × 1 column vector of position and
velocity estimates for FNfingers,D is aEN × 2FNmatrix for EN electrodes,
α is the smoothing factor, and β is the gain factor. For the position-
velocity Kalman filter, the smoothing factor and gain were only
implemented for the velocity kinematics. To determine the optimal
values for α and β, one day of testing with RK was dedicated to first
tuning the gain, β, by increasing its value. Using the value of β giving
the best performance, the smoothing factor, α, was then adjusted. The
optimal values, based on throughput, were found by scaling trained
values of α term by a factor of 1.25 and β by 1.2. The performance
improvements from using a zero-lag RK and optimally tuned gain and
smoothing factors were tested on the second day of testing. Using RK
with optimally tuned parameters (475 trials) resulted in only a 3.6%
increase in throughput and a 16% increase in average peak finger
velocity.

Although most comparisons of RN and RK use RK without tuned
hyperparameters, we did include a test RN and RKopt, which uses zero
lag and optimal values of α scaled by 1.25 and βby 1.2, and validated
ourfindingswith a fully optimizedRK at 29mospost-implantation (see
Results Section “ReFIT neural network decoder outperforms both the
original NN and RK decoders”).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sourcedata generated in this study have been providedwithin this
paper, as supplementary data with this manuscript, and also available
on the lab website [https://chestekresearch.engin.umich.edu/data-
and-resources/]. The raw datasets used for this study are too large to
be publicly shared, yet they are available for research purposes from
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the corresponding author on reasonable request. Source data are
provided with this paper.

Code availability
Thepythoncode for the neural networks is available on the labwebsite
[https://chestekresearch.engin.umich.edu/data-and-resources/].
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