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Abstract
Objective. Advanced myoelectric hands enable users to select from multiple functional grasps.
Current methods for controlling these hands are unintuitive and require frequent recalibration.
This case study assessed the performance of tasks involving grasp selection, object interaction, and
dynamic postural changes using intramuscular electrodes with regenerative peripheral nerve
interfaces (RPNIs) and residual muscles. Approach. One female with unilateral transradial
amputation participated in a series of experiments to compare the performance of grasp selection
controllers with RPNIs and intramuscular control signals with controllers using surface electrodes.
These experiments included a virtual grasp-matching task with and without a concurrent cognitive
task and physical tasks with a prosthesis including standardized functional assessments and a
functional assessment where the individual made a cup of coffee (‘Coffee Task’) that required grasp
transitions.Main results. In the virtual environment, the participant was able to select between four
functional grasps with higher accuracy using the RPNI controller (92.5%) compared to surface
controllers (81.9%). With the concurrent cognitive task, performance of the virtual task was more
consistent with RPNI controllers (reduced accuracy by 1.1%) compared to with surface controllers
(4.8%). When RPNI signals were excluded from the controller with intramuscular
electromyography (i.e. residual muscles only), grasp selection accuracy decreased by up to 24%.
The participant completed the Coffee Task with 11.7% longer completion time with the surface
controller than with the RPNI controller. She also completed the Coffee Task with 11 fewer
transition errors out of a maximum of 25 total errors when using the RPNI controller compared to
surface controller. Significance. The use of RPNI signals in concert with residual muscles and
intramuscular electrodes can improve grasp selection accuracy in both virtual and physical
environments. This approach yielded consistent performance without recalibration needs while
reducing cognitive load associated with pattern recognition for myoelectric control (clinical trial
registration number NCT03260400).

1. Introduction

The loss of an upper limb has a major impact on
individuals’ quality of life and perceived function [1,
2]. With a myoelectric prosthesis, individuals can
complete activities of daily living (ADLs), but are

typically restricted to only a single motion of the
hand or terminal device (open/close). This limit-
ation results in low movement quality [3–5] and
metabolic inefficiency [6] when completing vari-
ous ADLs with a prosthesis. Moreover, prosthesis
users must use alternative movement strategies that
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involve overreliance of their intact limb and the trunk
[7, 8], leading to secondary health complications
[9]. Advanced myoelectric prostheses are designed
to improve existing prosthetic function by providing
increased degrees-of-freedom (DoFs) of the terminal
device. Unfortunately, these advanced devices remain
difficult to control with low reliability of wristmotion
and prosthetic grasp selection [10–12]. Unsurpris-
ingly, prosthetic dissatisfaction rates remain high
[13], suggesting further work is needed to improve
function of upper limb prostheses.

Advanced myoelectric prostheses that provide
additional movements of the terminal device require
additional control signals beyond the standard pair
of agonist-antagonist muscles. To switch between dif-
ferent grasps (e.g. pinch, point), prosthesis users can
use additional control inputs such as muscle trig-
gers, or gestures of the forearm or foot [10, 14, 15].
These methods require prosthesis users to pause dur-
ing their movements and execute an unrelated task
(i.e. double impulse of muscles, moving the arm
quickly, moving the foot). Electromyography (EMG)
pattern recognition may provide a more intuitive
means for prosthetic grasp selection. With pattern
recognition, machine learning is used to distinguish
multiple movements from EMG signals acquired
via an array of electrodes in the prosthetic socket
[16–18]. Prosthesis users may calibrate the pattern
recognition system using activation of EMG signals
during either movements that correspond to the
desired functional grasp or an alternative movement
that outputs a stronger and more distinct muscle
pattern. Current commercial systems, such as Sense
[19] or Coapt [20], typically use surface EMG elec-
trodes. Using surface electrodes requires users to fre-
quently recalibrate due to inconsistent placement of
the electrodes from donning and doffing the pros-
thesis or shifting of the prosthetic socket over the
course of the day [11, 21–23]. As such, prosthesis
users of pattern recognition systems have reported
that the frequent need to recalibrate made the sys-
tem tiring and difficult to use [11]. Low muscle spe-
cificity and cross-talk between electrodes also limit
movement selection accuracy [21, 24, 25]. While cur-
rently available commercial systems for prostheses
with multiple DoF report reliable activation of three
to six distinct movements of the hand and wrist [10,
14], individuals who use these prostheses expressed
greater cognitive demand during functional assess-
ments compared to when using direct control [12].
Moreover, myoelectric prostheses with multiple DoF
have not consistently improved functional scores [26,
27] or movement quality [4] in prosthesis users com-
pared to using a prosthesis with a single DoF terminal
device.

The use of implanted intramuscular EMG elec-
trodes can address some of the challenges associ-
ated with using surface EMG for pattern recogni-
tion. Several studies have demonstrated the ability

to acquire control signals with high muscle spe-
cificity, high signal-to-noise ratio (SNR), and reduced
electrode cross-talk using intramuscular electrodes
[21, 28–30]. Accordingly, the use of intramuscular
EMG signals for hand and wrist movement classi-
fication has either maintained [22, 31] or improved
[32–34] classification accuracy compared to the use
of surface electrodes. However, these studies were
performed in healthy individuals with full muscu-
lature. The substitution of surface EMG with intra-
muscular EMG alone may not necessarily improve
the reliability of grasp selection, as this approach
still limits the acquisition of control signals from the
residual muscles only. Previous work in individuals
with transradial amputation found that residual fore-
arm muscles provide sufficient information to con-
trol wrist motion but not multiple hand grasps [25].
This highlights the importance of intrinsic muscles to
achieve hand grasp selection with reliable accuracy.
Unfortunately, intrinsicmuscles of the hand that once
provided fine digital dexterity are absent following
amputation, which is why prosthetic grasp selection
using only signals acquired from the residual muscu-
lature may be difficult.

To capture these absent control signals, research-
ers have attempted to measure efferent motor action
potentials from the nerve, which were originally
intended to control the missing musculature of the
hand. Some previous work have achieved this by pla-
cing electrodes to record directly from the nerves,
using devices such as multi-electrode arrays that
record from the nerve fascicles and nerve cuffs placed
around the neural compartments [35]. While this
approach has the benefit of recording directly from
the nerves with high specificity, the SNR of the nerve
signals are smaller than muscle signals. Moreover,
previous work have shown that implantation of elec-
trodes directly in or around the nervemay cause tissue
build-up and foreign body responses that may impact
signal quality [36]. The longevity of such systems has
been assessed on a scale of months [35, 37–39] to
years [36, 40].

Alternatively, others have accomplished acquisi-
tion of intrinsic and extrinsic hand signals by meas-
uring EMG activity from reinnervated muscle targets
[41–43]. For example, partially denervated intact
muscle are reinnervated during the targeted muscle
reinnervation (TMR) surgery [43].With a dense array
of surface EMG electrodes, individuals with TMR
could control multiple DoF [44, 45], including spe-
cificmotions thatwere previously unintuitive and dif-
ficult to control [44]. A study of eight individuals
with amputation following TMR surgery found that
utilizing these signals improved functional outcomes
after six to eight weeks of at-home prosthetic use
[18]. However, the procedure requires denervation of
intact muscles and may lack specificity in control sig-
nals due to innervating the same muscle target with
multiple nerve fascicles. Recently, a preliminary study
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reported that using implantable EMG to record from
residual muscles and TMR provided improved con-
trol signals earlier than acquiring signals using surface
electrode arrays [46].

The construction of regenerative peripheral nerve
interfaces (RPNIs) is another approach designed to
enable stable acquisition of additional prosthetic
control signals with high muscle specificity [29] to
improve current myoelectric grasp selection. In this
approach, a surgeon wraps a free muscle graft around
individually separated nerve fascicles in the residual
limb. After these grafts are revascularized and rein-
nervated, they serve as a bioamplifier for the sig-
nals that are transmitted down the peripheral nerve
[42, 47, 48]. These signals are difficult to record with
surface electrodes as the constructs are small (typ-
ically 3 × 1.5 × 0.5 cm grafts) and are typically
placed in surrounding musculature of the residual
limb to promote revascularization. However, con-
trol signals from RPNIs can be captured by implant-
ing intramuscular electrodes. Previously, Vu et al
demonstrated that intramuscular recording of RPNIs
had consistently high SNR for over one year post-
implantation in two individuals with amputation
[29]. Using these control signals, participants con-
trolled virtual finger movements with high accuracy,
including thumb flexion and opposition, which were
exclusively achieved using RPNI signals [29]. Addi-
tionally, the same participants had over 97% accur-
acy when selecting between four grasp postures and
rest usingRPNIs and residualmuscle EMG[49]. Clas-
sification accuracy remained high for different static
postures of the arm in one individual [49].

To expand on prior work, we conducted a case
study to assess the use of RPNIs and intramuscular
electrodes for tasks involving grasp selection, object
interaction, and dynamic postural changes. In one
experienced user of both virtual and physical myo-
electric prostheses, we compared the performance
of different pattern recognition classifiers with vary-
ing signal inputs (RPNIs and intramuscular residual
muscles vs. surface residual muscles), calibration data
(same-day vs. prior-day), and algorithm type (lin-
ear discriminant analysis (LDA) vs. hidden Markov
model (HMM)). Within the use of intramuscular
electrodes, we further evaluated the benefit of includ-
ing RPNI signals to those of residual muscles on the
classification of grasp and finger movements. We also
quantified the cognitive demand associated with dif-
ferent controllers by having the participant complete
a concurrent task while performing a virtual grasp
selection task. Lastly, we quantified grasp selection
performance during an ADL requiringmultiple grasp
selections while our participant controlled a myo-
electric prosthesis. During this ADL, we also quanti-
fied segmental trunk angles to determinewhether dif-
ferent controllers impact movement compensations
typically seen in prosthesis users.

2. Methods

2.1. Participant and surgery details
The participant in our case study was labeled P4 [29]
and P2 [49] in previous studies. Briefly, our parti-
cipant was a 1.4 m tall 54 year old female who had
a voluntary unilateral transradial amputation of her
right hand to address her limited range of motion
(ROM) and pain after an infection.During her ampu-
tation surgery, a surgeon constructed four RPNIs by
suturing a 3 cm × 1.5 cm × 0.5 cm free muscle
graft from her ipsilateral vastus lateralis to three free
nerve endings: one on her median, one on her dorsal
radial sensory, and two on her ulnar nerves. After
surgery, her residual limb length was 10.45 cm from
the cubital fold to distal end and she was fit with
a body-powered prosthesis. While the participant
self-reported wearing her prosthesis for approxim-
ately 48 h per week, she stated that she seldom
actuated her terminal device to complete ADLs at
home.

One year after amputation, the participant agreed
to participate in this research study (clinical trial
registration NCT03260400). As part of the study, a
surgeon implanted eight bipolar electrodes (Synapse
Biomedical, Oberlin, OH) into her residual muscles
and RPNIs (figure 1). Originally developed for
diaphragm control, these bipolar electrodes enable
recording of EMG activity following implantation.
One electrode was implanted in each of her two
ulnar RPNIs and one in the median RPNI. Electrodes
were also implanted in her flexor digitorum pro-
fundus indices (FDPIs), flexor pollicis longus, flexor
carpi radialis, extensor pollicis longus, and extensor
digitorum communis (EDC).

2.2. Myoelectric training with intramuscular
signals
The participant had over one year of experience con-
trolling a myoelectric prosthesis in the lab using
intramuscularly acquired control signals of the five
residual muscles and three RPNIs. During this time,
the participant controlled a virtual prosthesis and
completed functional tasks with an extra small i-
Limb Quantum (Ossur, Reykjavik, Iceland) [29, 49].
We tracked the participant’s training progress over
a six month period (252–456 d following electrode
implantation) by asking her to complete a series of
standardized functional tests using two intramuscu-
lar control signals—FDPI and EDC. Specifically, she
completed the abstract Southampton hand assess-
ment procedure (SHAP) [50], box and blocks test
(BBT) [51], and a modified version of BBT [52, 53].
Outcomemeasures for the SHAP and BBTwere com-
pletion time and the number of blocks moved in a
minute, respectively. Based on the established norm-
ative range of completion time [50], we calculated the
index of functionality out of 100 for each functional
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Figure 1. From left to right: illustration of placement of one median RPNI and two ulnar RPNIs relative to the level of the
participant’s amputation, surgical procedure of EMG electrode implantation, and the exit site of the chronically implanted EMG
electrodes.

grasp involved during the SHAP. The modified BBT
(MBBT) was further modified from previous studies
[52, 53] such that the participant moved 16 blocks
that were arranged in a raised 4-by-4 grid from the
ipsilateral side to the contralateral grid (supplemental
figure 1(B)). The outcome measure for the MBBT
was completion time. The participant also completed
BBT, MBBT, and the abstract SHAP using both her
clinically prescribed body-powered prosthesis and
her intact hand. We quantified the participant’s aver-
age and best performance with a myoelectric pros-
thesis over the six month period and reported her
best performance with her at-home body-powered
prosthesis and her contralateral intact hand as
reference.

The participant completed BBT over ten sessions,
MBBT over nine sessions, and abstract SHAP over
six sessions with the i-Limb. She completed BBT and
MBBT over four sessions and the abstract SHAP in a
single session using her body-powered prosthesis and
her intact hand.Outcomes fromdifferent assessments
over the six month period indicated that the parti-
cipant was able to use the myoelectric hand as well as
or better than her at-home body-powered device. The
participant’s performance with the i-Limb over time
and reference performance with her at-home body-
powered device and her contralateral left hand can be
seen in supplementary figure 1.

2.3. Development of pattern recognition
controllers
We developed a total of 27 pattern recognition con-
trollers using the mean absolute value of eight pairs
of bipolar electrodes as inputs (see supplemental
material 1 for details) and predicted grasps as out-
puts. Across controllers, we varied signal acquisi-
tion method, available grasps, algorithm type, and
calibration data. For acquisition methods, we used
three approaches: gelled surface electrodes (Biopac
Systems, Goleta, CA) (‘Gelled’), commercially avail-
able socket-mounted dry surface electrodes (College
Park Industries, Warren, MI) (‘Dry’), and RPNIs
and intramuscular electrodes (‘RPNI’). For each of

these acquisition methods, we built controllers to
classify two (fist and finger abduction/open), three
(add index finger point), or four (add pinch) dis-
tinct functional grasps and rest. We first built clas-
sifiers using LDA, which is commonly used to build
pattern recognition controllers [15, 32, 33, 45, 54,
55], with Gelled, Dry, and RPNI signals. Following
this initial comparison, we explored how algorithm
type and calibration data influence grasp selection
performance. Performance of classifiers with Gelled
signals was not explored beyond the initial com-
parison, as the purpose of the experiment was to
compare how intramuscular EMG and RPNIs com-
pare to the commercial standard of surface based
approach with dry electrodes. In addition to the LDA,
we built classifiers using naïve bayes HMMs with
Dry and RPNI signals, as prior work has demon-
strated that using the HMM reduces transition errors
and improves real-time grasp accuracy when using
RPNI signals [49]. Finally, we used different calibra-
tion data to build each classifier (i.e. same-day, prior-
day) to determine how robust Dry and RPNI classi-
fiers were to calibration. Same-day controllers were
built with calibration data collected at the beginning
of each experimental session. Prior-day controllers
used calibration data collected on a single day, up to
246 d prior for RPNI and up to 63 d prior for Dry
signals.

2.4. Virtual grasp selection performance and
cognitive load
The purpose of this experiment was to quantify grasp
selection accuracy and associated cognitive demand
of the different controllers in a virtual grasp selec-
tion task. In these experiments, the participant con-
trolled a virtual prosthetic hand and was asked to
match the grasp of a cue hand displayed on a com-
puter screen [56] (figure 2(A)). The participant then
repeated the task while concurrently completing the
controlled oral word association test (COWAT).With
COWAT, the participant listed as many words out
loud as possible that started with a specific letter of
the alphabet provided by the study team [57].
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Figure 2. Illustration of the virtual grasp matching task. (A) The participant sat in front of a computer screen that displayed the
cue grasp (shown in tan) and controlled the virtual hand with the controller’s decoder output (shown in green for correct grasp
and red for incorrect grasp). The participant was given five seconds per trial and was instructed to hold the accurate grasp for one
second. If the correct grasp was not achieved after five seconds, the trial was marked as incorrect. The participant repeated the
virtual task while simultaneously completing the controlled oral word association test (COWAT), during which she was asked to
say as many words out loud as possible that started with a specific letter of the alphabet. (B) Grasp selection accuracy and
(C) completion time of successful trials (mean± standard error) over five sessions of 25 trials per session (total 125 trials) for Dry
(orange), Gelled (green), and RPNI (blue) controllers with two, three, or four available grasps. The following conditions had
missing trials due to computer error: Gelled with three grasps (121 trials), Gelled with three grasps and COWAT (121 trials), Dry
with four grasps (123 trials), Dry with four grasps and COWAT (123 trials), Dry with two grasps and COWAT (123 trials). Virtual
task accuracy and completion time of each controller with and without COWAT are illustrated with diagonal hatch patterns and
solid bar graphs, respectively. Cognitive demand is reflected in a decreased accuracy and increased completion time with COWAT
compared to task completion without COWAT.

We explored the effects of recalibration and
the alternate pattern recognition algorithm (HMM)
on grasp selection accuracy for a single experi-
ment session (25 trials). We quantified grasp selec-
tion accuracy of RPNI and Dry controllers that
classified two, three, and four functional grasps
with varying algorithm type and calibration signal.
We compared the performance of Dry and RPNI
controllers built with either same-day calibration or
prior-day calibration. For each calibration condition
(same-day vs. prior-day), we also compared the per-
formance of LDA and HMM when using either Dry
or RPNI signals.

The participant completed a total of 25 trials of
the virtual grasp selection task using each LDA con-
troller (‘Gelled’/‘Dry’/‘RPNI’ × ‘two-grasp’/‘three-
grasp’/‘four-grasp’) across five separate sessions. The
participant always completed the four-grasp con-
dition first, followed by three-grasp and two-grasp
conditions. The order of testing for signal inputs
varied based on availability of electrodes. The par-
ticipant had months of training with pattern recog-
nition prior to collection, so we did not anticipate
learning would impact the results. Gelled and Dry

controllers used calibration signals that were newly
acquired each experimental session while RPNI con-
trollers used the initial calibration data acquired up to
246 d prior. Data for RPNI controllers used the initial
calibration data to reduce experiment time as the pre-
vious experiment suggested that there were very small
differences between same-day and prior-day calibra-
tion. In each session, she repeated the same 25 trials
with COWAT. For each trial, the participant had five
seconds to match the target grasp and was instructed
to hold the target grasp for one second. We quanti-
fied task accuracy as the percentage of successful tri-
als out of total number of trials across all sessions. We
also measured the average completion time of only
the successful trials. Finally, we quantified the differ-
ence in grasp selection accuracy and average comple-
tion time as ameasure of the cognitive load associated
with each controller.

In order to determine the specific contributions
of adding RPNIs to classification accuracy, we com-
pared virtual grasp selection performance between a
set of controllers built with intramuscular EMG sig-
nals from (a) residual muscles and RPNIs and (b)
residual muscles only in a single experiment session.
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Figure 3. (A) Illustration of the Coffee Task, during which the participant simulated brewing a cup of coffee using five functional
grasp transitions. The participant completed the task both continuously and in segments, with each grasp transition
corresponding to a segment. (B) Representative triaxial trunk segmental angle trajectory during the first segment (‘Pour from the
cup’) of the continuous Coffee Task using two-grasp (open/close; red), RPNI (blue), and Dry (orange) controllers. Positive angles
represent lateral lean towards the prosthesis (or the right) and axial rotation away from the prosthesis (or counter-clockwise). The
participant selected between four grasps with the RPNI and surface (Dry) controllers. The mean (black solid line) and standard
deviation (grey shaded area) of normative joint trajectory of a non-amputee during the Coffee Task is plotted for reference. The
participant employed greater range of motion (ROM) of the trunk using all controllers compared to the normative trajectory.
(C) Average number of transition errors quantified during the segmented task and (D) average completion time quantified
during the continuous task using surface LDA, RPNI LDA, RPNI HMM controllers. Error bars represent the standard deviation
across trials while individual points represent data from each trial.

All controllers’ calibration data were collected on the
day of the experiment. The participant first com-
pleted the grasp selection task between up to four
grasps and rest. She also completed the task with both
functional grasps and individual finger movements
to a maximum of eight classes—fist, finger abduc-
tion, thumb opposition, thumb flexion, index finger
flex/extension, and middle-ring-small finger flex/ex-
tension. We subsequently decreased the number of
available classes to six (remove index finger extension
and middle-ring-small extension) and four (remove
thumb opposition and flexion). The participant then
repeated the set of experiments while simultaneously
completing the COWAT.

2.5. Grasp selection during the coffee task
The purpose of this experiment was to quantify
how well the participant can use different pattern
recognition controllers to complete a functional rep-
resentative activity of daily living. Specifically, we
developed a ‘Coffee Task’ assessment to quantify how
well the participant could transition between grasps
when wearing a physical prosthesis to complete an
activity of daily living (figure 3(A)). This is distinct
from other functional outcomes where the individual
uses a different grasp for different parts of the assess-
ment (i.e. SHAP), but does not transition from one
grasp to another during any measured portion of
the assessment. Our Coffee Task required five grasp
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transitions (Refer to supplementary video 1 for the
illustration of the task) and was completed in the fol-
lowing sequence: (a) a fist grasp to grasp the coffee
cup to pour water (simulatedwith two beads) into the
water reservoir of a Keurig mini (Reading, MA), (b) a
pinch grasp to pick up the coffee pod and place into
the pod holder, (c) a point grasp to start the Keurig,
(d) a fist grasp to move the coffee cup from the coffee
maker to the table, and (e) a pinch grasp in combina-
tionwith the contralateral limb to open a sugar packet
and pour the sugar into the cup. The participant was
able to practice the Coffee Task with each controller
for two sessions prior to data collection.

The participant completed a continuous Cof-
fee Task five times with the Dry LDA, RPNI LDA,
and RPNI HMM controller with three i-Limb grasps
(fist/hand close, two-finger pinch, and point) and
hand open (controller trained as finger abduc-
tion), each with proportional open-close commands
[58, 59]. The participant did not complete the Cof-
fee Task with any Gelled controllers, as we could not
fabricate a prosthetic socket to accommodate gelled
surface electrodes. In this version of the task, she was
often able to continue and complete the task even
when an incorrect grasp was used for a particular seg-
ment. To better quantify grasp errors, we also asked
her to complete a segmented version of the task where
each grasp transition signaling the next phase of the
task sequence was performed as a separate segment.
The participant was allowed five attempts per seg-
ment to accomplish the accurate grasp and repeated
the segmented task five times with the RPNI control-
lers. The participant completed the segmented task
ten times over two sessions with the Dry controller
to account for the greater variability in performance
seen. During the continuous Coffee Task, we calcu-
lated the average completion time across all five tri-
als for each controller. During the segmented Cof-
fee Task, we quantified both the non-transition errors
(i.e. dropping of the objects, hand ‘flutter’ within an
accurate grasp) and grasp transition errors with a
maximum of 25 total errors per trial.

People with upper limb loss frequently use trunk
motion to help them properly position their pros-
thesis to interact with an object [7, 8]. Here, we char-
acterized trunk segmental angles during the Coffee
Task with different pattern recognition controllers.
Visual inspection indicated that our participant
employed the greatest amount of compensatory
movement strategies when she was simulating pour-
ing a cup of water into the coffee maker reservoir.
During this segment of the continuous Coffee Task,
we tracked the position of four reflective markers
placed on the trunk (sternal notch, xiphoid process,
seventh cervical vertebra, and eighth thoracic ver-
tebra) at 120 Hz using a 12-camera motion capture
system (Motion Analysis, Santa Rosa, CA). Marker
position data were filtered using a fourth-order low-
pass Butterworth filter with a cutoff frequency of 6Hz

in Visual 3D (C-Motion, Germantown, MA). Trunk
motion was defined relative to the global reference
frame according to [60]. Trunk segmental angles were
time normalized from 0% to 100% of task comple-
tion. We quantified the ROM of the trunk segmental
angle as the participant completed the task with two
multi-grasp controllers (Dry LDA, RPNI LDA).

3. Results

3.1. Virtual grasp selection performance and
cognitive load
In a single session (25 trials), we explored the effects
of varying calibration condition (prior-day vs. same-
day) and pattern recognition algorithm type (LDA vs.
HMM) on grasp selection accuracy of Dry and RPNI
controllers. During this exploratory session, control-
lers built using RPNI signals had consistently high
performance (100% accuracy) compared to those
using dry surface signals (69.0% accuracy), regardless
of calibration day (same-day vs. prior-day) or pattern
recognition algorithm type (LDA vs. HMM). With
prior-day calibration, grasp selection accuracy of the
Dry controllers with both LDA and HMM decreased
to 56% or below with the exception of the two-grasp
HMM controller (100%).

We then assessed grasp selection performance
and associated cognitive demand of each control
approach by having the participant complete vari-
ations of a virtual grasp selection task with and
without a concurrent cognitive task. This task was
repeated with controllers using two to four available
grasps with either dry surface (Dry), gelled surface
(Gelled), or intramuscular control signals with RPNIs
(RPNI). For all trials, across all sessions of two, three,
and four grasp controllers, the RPNI LDA control-
ler had the highest average accuracy of 92.5%, fol-
lowed by Gelled (82.5%) and Dry LDA (81.2%) sur-
face controllers (figure 2(B)). Within the two-grasp
controllers (fist and rest), all controllers had an accur-
acy above 90%. For all signal inputs, grasp selec-
tion accuracy decreased as the number of available
grasps increased. Differences between the controllers
with different signal inputs were more pronounced as
more grasps were included, with the RPNI LDA con-
troller having the smallest reduction in performance.

Across two, three, and four available grasps, the
participant completed successful trials the fastest
using the RPNI LDA controller (figure 2(C)). Across
all sessions, the average completion times for Dry,
Gelled, and RPNI LDA controllers were 1.76, 1.78,
and 1.68 s respectively across all sessions. For all con-
trollers, completion time increased as the number of
grasps increased.

When the participant completed the concurrent
cognitive task, her completion times increased by
an average of 429 ms with the maximum possible
completion time of 5 s across all controllers. The
participant’s grasp selection accuracy decreased by
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Figure 4. Virtual task selection accuracy and completion time of successful trials over a single session of 40 trials for the controller
built with residual muscles and RPNIs (green) and with residual muscles only (blue) with (A) two, three, or four available grasps
and (B) four, six, or eight available classes (grasps and thumb, index, and middle-ring-small (MRS) finger movements). Virtual
task accuracy and completion time of each controller with and without COWAT are illustrated with diagonal hatch patterns and
solid bar graphs, respectively. (C) Confusion matrix of eight available classes—Rest, Finger abduction (Abd), Fist, Index finger
flexion (Ind F), MRS finger flexion (MRS F), Thumb finger flexion (Th F), Thumb finger opposition (Th Opp), Index finger
extension (Ind E), MRS finger extension (MRS E)—of controllers with RPNIs and residual muscles (left) and with residual
muscles only (right). Grasp selection percentage is normalized to the incidence of each cue class and reported as percentages.

2.4%, 7.1% and 1.1%, when performing the concur-
rent cognitive task using the Dry, Gelled and RPNI
LDA controllers, respectively.

We also explored the benefits of including RPNIs
as control signal inputs specifically by building con-
trollers that did not include these signals (i.e. resid-
ual muscles only) and comparing their performance
against controllers with residual muscles and RPNIs.
When selecting between two grasps (finger abduc-
tion and fist), both controllers with and without
RPNIs had an accuracy of 100% (figure 4(A)). When
the number of available grasps increased, controllers
with only residual muscle had degraded performance
(80% at three grasps and 76% at four grasps), while
those including RPNIs maintained 100% accuracy.

There were no consistent trend for changes in com-
pletion time between different signal inputs.

There was a consistent benefit to including RPNIs
in the classification of both grasp and finger move-
ments (average improvement of 14.2%), with the
greatest improvements for the larger number of
classes including thumb movements (figure 4(B)).
Notably, with all eight classes, the controllers could
achieve thumb flexion with 75% and 25% accuracy
with and without RPNIs, respectively. There were
no consistent difference in completion time between
controllers.

With the concurrent cognitive task, the parti-
cipant completed the task with reduced selection
accuracy and increased completion time for all
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controllers. There were no consistent trends in out-
comes between controllers with and without RPNIs.

3.2. Grasp selection during the coffee task
In this experiment, we evaluated whether controller
inputs (surface/RPNI) affected grasp selection errors
and completion time of a physical coffee making task
that required three functional grasps and active open.
We also explored how the type of pattern recognition
algorithm (LDA vs. HMM) impacted grasp selection
using RPNIs during this task. The participant did not
complete the Coffee Taskwith theDryHMMcontrol-
ler for four grasps, as shewas not able to reliably trans-
ition to closing the fist and pinch grasps using this
controller. Therefore, the participant completed the
Coffee Task using only the Dry LDA, RPNI LDA, and
RPNI HMM controllers with three functional grasps.
Across five trials of the continuous Coffee Task, the
RPNI HMM controller had the shortest average com-
pletion time of 64.8 s compared to theRPNI LDAcon-
troller (78.4 s) and the Dry LDA controller (84.1 s)
(figure 3(D)). For reference, three healthy individuals
without limb loss (twomales, one female; age 33± 6)
completed the Coffee Task with an average comple-
tion time of 13.71 s across five trials.

Using the Dry LDA controller, the participant
completed the segmented Coffee Task with an aver-
age of 15 total errors out of a maximum of 25
possible errors, of which 14 were transition errors
(figure 3(C)). In contrast, the RPNI LDA controller
had an average of four errors with zero non-transition
error. With the RPNI HMM, the participant com-
pleted the task with an average of five errors with
zero non-transition error. For the RPNI LDA control-
ler, 11 out of 17 (64.7%) total transition errors over
all five trials consisted of misclassifications of pinch
grasp when the participant attempted a fist grasp. For
the Dry LDA controller, 45 out of 141 (31.9%) total
transition errors over all trials consisted of misclassi-
fication of fist grasp when the participant attempted
a pinch grasp.

We assessed trunk compensations during the
pouring segment of the continuous Coffee Task.
Using the Dry LDA controller, the participant
reduced her average ROM by 9◦ lateral lean and 16◦

axial rotation compared to when using the RPNI
surface controller. For both surface and RPNI con-
trollers, the participant had greater trunk ROM than
what was used by a healthy non-amputee complet-
ing this task (21◦ lateral lean, 31◦ axial rotation, 9◦

flexion).

4. Discussion

In this study, we demonstrated that the use of RPNIs
and intramuscular electrodes can improve functional
performance during the control of multi-articulating
hands without the need for recalibration. Moreover,
the inclusion of RPNIs as signal inputs in pattern

recognition systems improved class selection accur-
acy in both grasp-only classifiers and classifiers with
grasps and individual finger movements. In both vir-
tual and physical environments, our participant con-
sistently had higher grasp selection accuracies and
faster completion times when using controllers built
from RPNIs and intramuscular EMG compared to
those using surface EMG. Our participant’s grasp
selection performance was alsomore consistent when
using controllers built from RPNIs and intramus-
cular EMG to those built from surface EMG while
simultaneously completing a cognitive task. There-
fore, the approach of using RPNIs and acquiring
control signals intramuscularly may be less cognit-
ively demanding than conventional commercial con-
trol approaches. In addition, we explored differ-
ent controller configurations with varying calibration
day (prior-day vs. same-day) and machine learning
algorithm (LDA vs. HMM). Controllers built from
RPNIs and intramuscular EMG had consistently high
selection accuracy and were less affected by vary-
ing machine learning algorithms and calibration data
than those from surface EMG.

In this study, we expanded on prior work by
demonstrating that the inclusion of RPNI signals can
improve classification accuracy, for both grasp-only
classifiers and classifiers with grasps and individual
finger control. In particular, inclusion of RPNI sig-
nals provided large improvements in the classifica-
tion of individual finger movements, including those
of the thumb. In fact, thumbmovement classification
was not achievable without RPNI signals (accuracy
0%–25% with residual muscles only). This improve-
ment indicates that RPNI signals contain import-
ant information for intrinsic hand muscles. Simil-
arly, previous studies have demonstrated that RPNIs
provide reliable multi-DoF thumb control with a
regression algorithm [29] and can be used for clas-
sification of finger abduction/adduction in a virtual
environment [29, 49]. However, due to the lack of
commercially available hardware that enables move-
ments of individual fingers, it remains unclear how
well RPNIs can be used to control individual fingers
in a physical environment.

The need to frequently recalibrate is identified as
one of the major drawbacks of using surface pattern
recognition systems. Previous work have acknow-
ledged that recalibration of control signals may be
needed as the system performance may deterior-
ate over time as electrode positions shift and users
fatigue [61]. Understanding that recalibration is a
major feature of currently available pattern recogni-
tion systems, training guidelines for pattern recog-
nition system users include helping users recognize
when recalibration is needed, whichmay be necessary
multiple times a day [23]. One prior take-home study
of a pattern recognition system with surface EMG
reported that several users expressed frustration with
the decrease in responsiveness of their prostheses,
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prompting them to frequently recalibrate. Addition-
ally, users reported that calibration may or may not
be successful in their initial attempt [11]. As such,
prior studies have explored intramuscular EMG as an
alternative to commercial surface EMG and reported
that their approach can improve muscle specificity
and reduce calibration needs while maintaining con-
sistently high decode accuracy [21, 28, 29]. Simil-
arly, our results demonstrate that using intramus-
cular signals eliminates recalibration needs for more
than nine months, which is longer than the period
of observation reported in previous studies. Using
prior-day calibration, the Dry LDA controller accur-
acy decreased substantially from 80% to 20% during
the virtual grasp selection task with four grasps. In
contrast, the RPNI controllers that were built from
signals acquired with intramuscular electrodes were
equally accurate between prior-day and same-day cal-
ibration condition. This is particularly notable, since
prior-day calibration signals were collected once and
our participant used the identical controller for up
to 246 d following. Thus, the use of intramuscular
electrodes for grasp selection pattern recognition can
eliminate recalibration needs for at least ninemonths.
We expect that removing the need for recalibration
through the use of RPNIs to achieve myoelectric pat-
tern recognition would reduce frustration and pro-
mote more successful integration of prostheses in
users’ daily lives.

Grasp selection performance observed in vir-
tual environments may not translate to performance
expected in real-world environment. While our par-
ticipant completed the virtual grasp selection task
with an average of 95.6% accuracy with her RPNI
LDA controller, she made an average of 4 errors out
of 25 maximum possible errors during the segmen-
ted Coffee Task. Nevertheless, our participant com-
pleted the Coffee Task with greater accuracy and
shorter completion time when she was using RPNI
signals compared to when using surface EMG sig-
nals. There are several challenges that exist in real
world environments that do not apply to virtual tasks
that may explain the sources of these errors. In a
virtual environment, multiple grasps can be rapidly
predicted and actuated by the controller. In other
words, the ‘flutter’ between grasps can be quickly
corrected without compromising selection accuracy.
However, the physical prosthesis may flutter within
a correct grasp (non-transition error) or between a
correct and an incorrect grasp (transition error) with
additional hardware response times to consider dur-
ing these selections. Even without any fluttering, the
hardware interface delayed transition times between
grasps. This could add frustration, especially when an
incorrect grasp is selected and a correction must be
made. The added weight of the prosthesis in a phys-
ical environment also likely shifted muscle activation
patterns of our participant. Vaskov et al suggested
that the RPNI controller accuracy in virtual tasks is

consistent across different static arm postures with
a donned prosthesis [49]. However, dynamic move-
ments of the prosthetic limb required during the Cof-
fee Taskmay introducemovement artifacts, especially
with surface EMG signals. These artifacts can result in
muscle activation patterns that are no longer reflect-
ive of the original patterns used to build the control-
lers, leading to low grasp selection accuracy. Further-
more, the involvement of object interactions required
our participant to learn how to optimize hand orient-
ation given the object and the required grasp. This
is particularly challenging given the lack of sensory
feedback offered by the prosthesis used in this study
and the majority of the prosthesis available today.
As such, our participant made several non-transition
errors such as dropping the object.

How the availability of multiple functional grasps
impacts prosthesis users’ movement patterns and
compensatory strategies has not been sufficiently
explored. In this case study, we also assessed the dif-
ferences inmovement strategy during the Coffee Task
completed with multi-grasp controllers (with surface
or RPNI signals) and a single DoF (open/close) RPNI
controller. Visually, we noted that the participant
made significant compensatory movements with her
trunk to successfully complete the task. In particu-
lar, our participant leaned her trunk toward her intact
limb and supported her weight with the intact hand
as she poured the beads from the cup into the cof-
fee machine reservoir (refer to supplementary video
1 for the illustration of this movement). She also shif-
ted her body position around the perimeter of the
table to ease the manipulation of the objects during
various parts of the task. It is possible that the parti-
cipant’s physical limitations prevented her from using
any othermovement strategy than those that involved
excessive trunk ROM. Due to the repeated surgical
procedures to address the initial complication that
eventually led to her amputation, the participant
experienced limited ROM in shoulder elevation and
elbow flexion. It is also possible that our participant
was more reliant on her trunk ROM due to the lack
of active wrist control. Previous work suggested that
wrist dexterity is more essential than finger dexterity
to reduce prosthetic movement compensations [62].
Therefore, the addition of a motorized wrist unit,
along with functional grasps, may be beneficial in
employing movement strategies that are less prone to
joint health complications [9].

There are several limitations to consider when
interpreting the results from this study. Our case
study only involved one individual due to the rel-
ative invasiveness of the procedure, the necessity of
extended and frequent laboratory visits, and COVID
testing restrictions. As such, results in this study
may not generalize to the broader population with
amputation who have different amputation levels,
residual muscle control, and prosthetic experience.
Also, our participant used a body-powered prosthesis
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at home, so her myoelectric control experience was
confined within the time spent in the lab. The par-
ticipant gained numerous hours of myoelectric con-
trol experience over the three years of study enroll-
ment. While she learned how to control a physical
myoelectric prosthesis over the six month training
period with various functional assessments, she did
not receive any physical or occupational therapy. This
lack of systematic clinical training may have influ-
enced her overall myoelectric control proficiency. It
is possible that learning influenced her results with
each signal input type as her experiencewith each var-
ied. However, we believe this is unlikely as she had
over a year of experience controlling a virtual pros-
thesis with pattern recognition.While this was largely
done with intramuscular signals, the principle of pat-
tern recognition was consistent across different signal
types. Lastly, we developed a novel functional task to
quantify controller performance in a physical envir-
onment, as there are no existing validated assessment
that quantify prosthetic grasp transitions. As such, it
is difficult to compare this participant’s performance
to other prosthesis users or individuals using different
grasp selection controllers. Nevertheless, we were able
tomakewithin-participant comparisons between dif-
ferent myoelectric controllers.

In conclusion, this case study demonstrated that
the combined use of RPNIs and intramuscular EMG
have the potential to improvemyoelectric grasp selec-
tion, without recalibration, for up to nine months.
Our participant completed both virtual and physical
tasks with improved accuracy and faster completion
time with RPNIs and intramuscular EMG compared
to with surface EMG. Our participant’s grasp selec-
tion performance was also more consistent with a
concurrent cognitive task with RPNIs. Future work
will focus on combiningmulti-grasp control with act-
ive wrist motion and include take-home studies to
better characterize the potential of using RPNIs and
intramuscular EMG in real-world settings.
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