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Abstract
Objective. Extracting signals directly from the motor system poses challenges in obtaining both
high amplitude and sustainable signals for upper-limb neuroprosthetic control. To translate neural
interfaces into the clinical space, these interfaces must provide consistent signals and prosthetic
performance. Approach. Previously, we have demonstrated that the Regenerative Peripheral Nerve
Interface (RPNI) is a biologically stable, bioamplifier of efferent motor action potentials. Here, we
assessed the signal reliability from electrodes surgically implanted in RPNIs and residual
innervated muscles in humans for long-term prosthetic control.Main results. RPNI signal quality,
measured as signal-to-noise ratio, remained greater than 15 for up to 276 and 1054 d in participant
1 (P1), and participant 2 (P2), respectively. Electromyography from both RPNIs and residual
muscles was used to decode finger and grasp movements. Though signal amplitude varied between
sessions, P2 maintained real-time prosthetic performance above 94% accuracy for 604 d without
recalibration. Additionally, P2 completed a real-world multi-sequence coffee task with 99%
accuracy for 611 d without recalibration. Significance. This study demonstrates the potential of
RPNIs and implanted EMG electrodes as a long-term interface for enhanced prosthetic control.

1. Introduction

Major upper-limb amputation is a devastating injury,
leading not only to the inability to perform tasks
and activities of daily living, but also to concomit-
ant issues, such as depression, compensatory overuse
injuries, and loss or diminished employment [1–3].
In the United States alone, approximately 41 000
people live with major upper-limb amputations [4],
and global prevalence is estimated in the millions [5].
Many advancements in myoelectric prosthetic arm
systems have allowed control of multiple degrees of

freedom (DoFs), which can include individual finger,
wrist, and elbow control [6–9]. However, despite
these technological advancements, end-users do not
have accurate and reliable control over these addi-
tional DoFs [10, 11]. In fact, 10%–25%of people with
upper-limb amputations choose not to use a pros-
thesis, and those who do, around 50% use a myoelec-
tric prosthesis [12–16].

Currently, the clinical standard of control for
upper-limb myoelectric prosthetic users is dir-
ect dual-site control, in which available agonist–
antagonist muscle pairs modulate a single degree of
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freedom of a prosthetic hand (e.g. hand open/close)
[17]. A residual muscle’s electromyogram (EMG)
signal controls the direction of the motor on the
prosthetic joint, while their signal amplitude propor-
tionally controls the motor speed. Clinicians typically
place a pair of electrodes on the surface of the resid-
ual limb to obtain these surface EMG signals [17,
18]. However, the agonist–antagonist muscle pairs’
physiological function may not correspond to the
same function on the prosthesis. For example, the
wrist flexor and extensor muscle pair would be used
to control hand open/close for a person with a trans-
radial amputation. This control paradigm becomes
unintuitive, cumbersome, and limits prosthetic func-
tion for the end-users, which negatively impacts their
functional expectations and can contribute to pros-
thesis abandonment [15].

To command more DoFs, commercial and
research groups have implemented grip selection
mechanisms to switch between arm and hand
postures. One of the more commonly employed
approaches uses specific surface EMG patterns, such
as co-contracting of a muscle pair, to trigger a trans-
ition from one grip to another (e.g. switch hand
open/close to wrist supination/pronation) [19]. In
other approaches, the person uses specific body
movements (i.e. the forearm or foot) attached with
inertial measurement units to trigger this transition
[20, 21]. Unfortunately, these existing control meth-
ods remain unintuitive and time-consuming during
activities of daily living and do not provide natural-
istic function [21–24].

Pattern recognition systems have been developed
to provide more intuitive and consistent control
of grip switching [25–31]. In this approach, mul-
tiple surface recording electrodes (typically eight
sites) capture the surface EMG of residual innerv-
ated muscles or reinnervated muscles created from
targetedmuscle reinnervation (TMR) [32], which can
be classified to a specific hand posture or grasp [33].
TMR surgically reroutes transected nerves to rein-
nervate existing muscle to regain lost motor func-
tion. If unique muscle activity patterns correlate with
a specific grasp, then this approach can provide pros-
thesis users with more intuitive control of multiple
grips. Comparison studies have demonstrated that
pattern recognition systems can outperform direct
control in several functional assessments [29, 34].
However, despite the improved prosthetic perform-
ance with pattern recognition, the limitations associ-
ated with surface EMG still affect controller reliabil-
ity. Donning and doffing the prostheses often requires
a system recalibration and even changes in arm pos-
ition during use have been shown to reduce control-
ler accuracy [35–38]. The number of functional grips
reliably achieved in real-world scenarios is 2 or 3 com-
pared to the 9 or 12 reported in laboratory settings
[33, 39]. With inconsistent control, users are forced

to recalibrate the system frequently, which can cause
end-user frustration [34].

To provide more intuitive and consistent func-
tional control of multi-articulated prosthetic hands,
many invasive approaches have been employed to
overcome some of the shortcomings of surface
EMG [40–45]. Electrode recordings of efferent motor
action potentials directly from the peripheral nerve
have been able to demonstrate control of mul-
tiple DoFs of individuated fingers proportionally and
simultaneously [45–48]. However, it has been very
challenging to achieve long term stability of neural
recordings with this approach. For instance, the
longest demonstrated stable peripheral nerve inter-
face in a person with limb loss was 16 months with
only 9% of the electrode sites being active and func-
tional at this time point [49]. Unfortunately, other
direct nerve recording approaches have not reported
data longer than 2–8 months following implantation
and face similar challenges in maintaining consist-
ent functional sites [50]. Furthermore, each of these
peripheral nerve interfaces have limitations regarding
nerve specificity, tissue injury, axonal degeneration,
or scar tissue formation associated with a chronic
indwelling foreign body response.

Alternatively, surgically implanting intramuscu-
lar electrodes in residual innervated muscles and
muscles that underwent TMR can achieve more
robust electrode recordings of prosthetic control
signals [44, 46, 51, 52]. Studies have demonstrated
improved control accuracy and reduced movement
variability using intramuscular or epimysial EMG
recordings, independent of changes to the control
strategy [43, 44, 52–54]. Specifically, people with
above elbow amputations implanted with a per-
cutaneous bone-anchored interface (osseointegra-
tion) and TMR had a functional prosthesis after
3–7 years of use with one participant returning to
full-time employment [53]. People with transradial
amputations demonstrated stable three-DoF pros-
thetic control in a virtual space up to 10 months
without recalibration using percutaneous intramus-
cular electrodes in residual innervated muscles [54].
These studies have shown promising long-term use
of implanted electrodes. However, osseointegration
remains limited in the number of electrodes that
can be fed through the bone-anchored interface (up
to four bipolar electrodes), which limits the num-
ber of acquired control signals and thus, prosthetic
functionality [43]. Lukyanenko et al demonstrated
reliable control in the virtual space, but to show
full efficacy, studies need to evaluate prosthetic per-
formance with a physical real-world task for clinical
translation.

To provide more independent control sites and
capture lost efferent motor activity from severed
peripheral nerves, our group has developed the
Regenerative Peripheral Nerve Interface (RPNI) as
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a biologic interface to increase prosthetic function
[55–58]. The RPNI is created by surgically implanting
the distal end of a transected nerve into an auto-
genous free muscle graft [59]. The nerve undergoes
axonal sprouting, elongation, and reinnervation of
the free muscle graft to create the RPNI. This pro-
cess occurs within 8 weeks following implantation
[55, 58]. Efferent motor action potentials cause the
RPNI to contract evoking relatively large EMG signals
with a high signal-to-noise ratio (SNR) even when
RPNIs are created on individual nerve fascicles. In
essence, the RPNIs act as a bioamplifier of the efferent
motor action potentials [55, 56]. Extensive and robust
rodent, non-human primate, and human data have
demonstrated the feasibility, and high signal fidelity
of the RPNIs [55, 56, 60–63].

In previous work, we have shown that RPNIs have
high SNR at a few time points, up to 2–3 years after
RPNI creation [56]. Here, we conducted a systematic
analysis on the quality of recorded signals to under-
stand the long-term signal reliability, measuring at
monthly intervals (outside of COVID-19 pauses) up
to 1054 d and 276 d after electrode implantation in
two individuals with limb loss. We show that both
residual muscle and RPNI signals do not significantly
decrease over time, despite day-to-day variability. We
then evaluated the long-term prosthetic performance
in one participant, training a decoder on a single day
of recordings and reusing the decoder without recal-
ibration up to 604 d. Specifically, we decoded four dif-
ferent hand postures across four different arm pos-
tures in online experiments and showed a median
performance of 95.9%. Finally, we demonstrated the
feasibility of using our four-class decoder in a repres-
entative activity of daily living in one individual for
611 d without recalibration. Overall, we found that
intramuscular signals clearly generate reliable pros-
thesis function without the need to recalibrate as
opposed to surface electrode signals [29], and RPNIs
can consistently generate SNRs greater than direct
nerve recordings [45, 46, 50].

2. Methods

The Institutional Review Board at the University
of Michigan approved this study (HUM00124839),
and each participant provided written and informed
consent. Detailed descriptions of the implantations,
signal processing, and decoding algorithm were
described previously [56, 63]. The authors have con-
firmed that any identifiable participants in this study
have given their consent for publication.

2.1. Electrode implant
For clarity, participant 1 (P1) and participant 2 (P2),
who had transradial amputations, underwent RPNI
surgery for the treatment of their neuroma pain
and phantom pain. One-year post-RPNI surgery,
eight indwelling bipolar electrodes were implanted

to record EMG from the RPNIs and several residual
muscles. P1 had one RPNI created on each median
and ulnar nerve, whereas P2 had one RPNI cre-
ated on the median nerve and two RPNIs created on
the divided ulnar nerve. Electrodes were placed in
the following residual muscles: flexor pollicis longus,
flexor digitorum profundus (FDP) index finger, FDP
small finger, flexor carpi radialis (FCR), extensor
digitorum communis (EDC), and extensor pollicis
longus (EPL). P2 received electrodes in all residual
muscles mentioned above except for FDP small fin-
ger to accommodate the additional ulnar RPNI.

2.2. Signal processing
Percutaneous connectors were attached to a neural
signal processor (NeuroPort, Blackrock Microsys-
tems), which recorded EMG signals at 30 ksps and
filtered them between 3 and 7000 Hz (unity gain)
for offline analysis. AMatlab target xPC (Mathworks)
further filtered the EMG from 100 to 500 Hz, down-
sampled the recording to 1 kSps, and decoded EMG
into movement commands. EMG SNR from each
electrode channel was calculated by taking the root
mean square (RMS) of the EMG during volitional
phantom finger movements and dividing by the RMS
of the electrode’s noise floor seen during rest. For P1
and P2, 12 sessions (across 1 year) and 27 sessions
(across 3 years) were analyzed for signal quality and
SNR.

2.3. Online decoder analysis across multiple arm
postures
P2 completed 16 experiment sessions over 604 d to
assess the stability of a decoder performance over
time. P1 also completed real-time control experi-
ments in a previous study, often using weeks-old cal-
ibration data [63]. However, he withdrew from the
clinical trial before the structured protocol to assess
decoder stability was developed for this study. A Hid-
den Markov Model-Naïve Bayes (HMM-NB) classi-
fier was trained using six channels (median RPNI,
ulnar RPNI 1, ulnar RPNI 2, FDL, FDP index, EDC)
to distinguish four functional grips: rest, fist, pinch,
and point. FCR and EPL channels were excluded
because they did not add information to the four
movements. P2 completed one calibration session
in a neutral arm position (arm supported on table)
to train the HMM-NB, during which she mim-
icked the virtual display with her phantom hand for
five repetitions of each movement (figure 1(a)). The
Mean-Absolute-Value (MAV) time domain feature
[25] was extracted from each channel in 50 ms non-
overlapping time bins during each repetition. The cal-
ibration procedure and model training took less than
5 min to complete. The trained HMM-NB model
parameters were fixed and reused for subsequent
decoding sessions.

Briefly, the HMM-NBmodels dynamic EMG pat-
terns evoked during finger movements as a series
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Figure 1. Experiment set-up and task description. (a) Participants mimicked a virtual hand with their phantom limb to collect
intramuscular EMG for offline analyses and decoder calibration (solid red arrow). P2 controlled a second virtual hand to match
cued postures during online decoding sessions (dashed red arrow). (b) To quantify decoding performance over time, P2
completed the virtual task in four static arm positions, with her inactive prosthesis donned to simulate weight effects. (c) P2 then
used her prosthesis to complete a multi-grasp coffee making task.

of latent states. The HMM-NB can leverage the
high-resolution signals from intramuscular elec-
trodes to accurately decode movements with faster
processing windows than similar single-state models.
Implementation of the HMM used here is detailed in
previous work [63]. Decoder performance was quan-
tified using a real-time posturematching discrete task
in a virtual environment. A virtual cued hand was
displayed, while the participant controlled a second
virtual hand to match the cued grip. In these ses-
sions, performance was measured in four arm posi-
tions detailed below (figure 1(b)):

Arm at side: arm relaxed in a natural
position parallel to trunk;
Arm in front: shoulder flexed 50◦,
elbow flexed 130◦;
Arm across: forearm parallel to floor,
across chest such that the prostheses
fingers extended 6” beyond the parti-
cipant’s midline;
Arm raised: shoulder flexed 80◦, elbow
flexed 100◦.

P2 used the HMM-NB to directly switch between
the three postures and rest. The virtual task required
her to hold a cued posture for 1 s continuously, with
a timeout period of 5 s, before switching to a new
pseudo-randomly cued posture. In each decoding ses-
sion, she completed 20–30 trials of the virtual task in
each arm position, with approximately 3 min of rest
in between positions. Researchers used a goniometer
to confirm her shoulder and elbow flexion angles
for each arm position. Decoder performance was

quantified bymeasuring transition errors between the
start of EMG onset and the end of each trial. A trans-
ition error was counted if the decoder predicted any
grip outside the cued grip during any 50 ms timestep.
Decoder accuracy accounts for both the occurrence
and duration of transition errors and was calculated
as a percentage of correctly classified timesteps out of
the total timesteps as follows:

Ac =

∑
i∈Tc

[xi = c]

n(Tc)
,

where Ac is the accuracy for movement c, xi is the
logged decoder output at timestep i, and T is the set
of timesteps analyzed.

To visualize the EMG features, infomax inde-
pendent component analysis (ICA) with dimension-
ality reduction (principal component analysis (PCA))
was used to decompose the six channels into 2D
space. The ICA-PCA technique was performed using
the function runica() in the EEGLABpackage [64, 65]
(v4.5b; http://sccn.ucsd.edu/eeglab/).

2.4. Coffee making task
P2 also completed a bilateral Coffee Task that required
use of all four functional grasps mentioned above
using an extra small iLimb Quantum™ (Ossur, Reyk-
javik, Iceland). During the Coffee Task, she used a cup
with water (simulated with beads), coffee pod, sugar,
and a coffee brewer (Keurig™ mini (Reading, MA))
to simulate brewing a cup of coffee (figure 1(c)).
The participant was asked to complete the full task
continuously to quantify completion time. She also
repeated the task in five segments, in which each
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segment measured the accuracy of transitioning into
a specified grip (e.g. make a fist to pick up the cup
with water). P2 repeated each segment five times
across five trials with a total maximum number of
possible transition errors of 125 (5 segments ∗ 5 repe-
titions ∗ 5 trials).

P2’s controller for the coffee task had an addi-
tional hand open movement (hand abduction) that
allowed her to open the hand and then switch to a new
grip. A grip selection filter and proportional control
strategy were adapted from previous work [28, 66].
Designed to prevent suddenmovements, which could
occur with a discrete controller, the grip selection fil-
ter had a 250 ms threshold to actuate a new grip and
the proportional controller attenuated her propor-
tional control signal with a 500ms velocity ramp. Cal-
ibration data for the hand open movement was also
collected on the same calibration day as the four grips
mentioned above. The coffee task was completed 590
and 611 d post-decoder training. In our previous
study, P2 was able to use the three-grasp HMM,
without an active open, to perform a simple object
movement task. However, we concluded that a pro-
portional adjustment of grip aperture would provide
better control for a wider range of activities [63].

2.5. Offline decoder analysis of nine movements
The same calibration method and MAV feature
extraction was used to collect data for the nine-
movement offline analysis for five sessions over a span
of 276 d for P1 and seven sessions over 463 d for
P2. In addition to the HMM-NB, single-state Naïve
Bayes (NB) and linear discriminant analysis (LDA)
classifiers were trained with Matlab 2021a functions
to predict rest, thumb, index, middle, ring, small fin-
ger flexion, wrist flexion, finger abduction, and fin-
ger adduction. Decoders were trained on the first day
of collected data and not updated for subsequent ses-
sions. Accuracy on the first day was measured using
leave-one-out cross validation. Decoder accuracy was
calculated on a per-trial basis by predicting move-
ment from trial-averaged EMG for NB and LDA,
and the mode of the HMM-NB output. This method
attempts to ignore transient errors and was chosen
to measure algorithm performance in an open loop
setting.

2.6. Offline analysis of RPNI contributions to
movement decoding
To highlight the contribution of RPNIs to movement
decoding, a post-hoc analysis compared the perform-
ance of movement classifiers with input from only
residual muscles to classifiers with input from resid-
ual muscles and RPNIs for both P1 and P2. In an off-
line analysis, LDA classifiers were trained and tested
onmultiple sessions for threemovement sets: the four
functional grips used in the arm posture test (n = 3
sessions across 173 d for P1, n = 4 sessions across
288 d for P2), the above nine movement analysis,

and six intrinsic movements (n = 4 sessions across
212 d for P1, n = 7 sessions across 463 d for P2).
The third movement set focused on distinguishing
thumb and finger movements controlled by intrinsic
hand muscles (thumb opposition, finger abduction,
finger adduction) from thumb flexion, index flexion,
and rest. Decoders were retrained for each session,
accuracy was calculated as described above, then aver-
aged across all sessions. RPNIs were inferred to be the
most valuable for predicting themovements that were
most negatively affected by their removal as a decoder
input.

2.7. Statistical analysis
Trends in decoder performance and SNR were
assessed with a linear regression model. A non-zero
slope, i.e. change in SNR or decoder performance
over time, was evaluated with an F-test. If a signific-
ant change was detected, the sign of the slope then
determined an increasing or decreasing linear trend
over time. Online decoding accuracy between arm
positions used a one-way ANOVA with Bonferroni
correction formultiple comparisons.Offline compar-
ison of decoding algorithms used a Wilcoxon rank
sum test. All statistical comparisons were analyzed
with a significance level of α = 0.05.

3. Results

3.1. RPNIs produce large signals for long time
periods
To quantify the long-term stability of intramuscu-
lar EMG signals over time, participants completed a
virtual posture switching task monthly up to 12 and
35 months for participant 1 (P1), and participant 2
(P2), respectively. The SNR of participants P1 and
P2’s RPNIs remained consistently high, ranging from
15 to 250 across sessions (figure 2(a)). These SNRs
were captured up to 276 and 1054 d post-electrode
implantation for P1 and P2, respectively. The median
(interquartile range; IQR) SNR of RPNIs was 47.61
(103.89) for P1 and 24.49 (18.53) for P2. Comparat-
ively, the median SNR of residual muscles was 83.72
(111.9) for P1 and 25.23 (40.72) for P2. Interestingly,
P1’s RPNIs had a significant linear increase in SNR
amplitude over time (p < 0.05, F-test), whereas P2’s
RPNIs did not have significant increasing or decreas-
ing linear trends in SNR amplitudes (p = 0.97, 0.12,
0.07 for median RPNI, ulnar RPNI 1, and ulnar RPNI
2, respectively, F-test) across sessions.

Though all electrode channels showed high amp-
litude SNRs on each day, the SNR magnitude var-
ied between sessions. Breaking down the SNR into its
numerator (RMS of EMG) and denominator (RMS
of electrode noise floor) components, we first invest-
igated if the variability was being driven by the RMS
of the electrode noise floor. For both P1 and P2, the
RMS of the electrode noise floor across all channels
remained stable with a median (IQR) of 1.43 µV
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Figure 2.Measured signal-to-noise ratios (SNRs) over time. (a) Measured SNRs for P1 and P2 during volitional phantom
movements of thumb and small finger flexion. SNRs remained high for both RPNIs and residual muscle channels with no
decreasing linear trend (p> 0.05, F-test). However, SNRs did vary from session to session. The dashed line represents the mean
SNR of surface EMG estimated from literature [67, 68]. (b) Boxplots representing the median root mean squared (RMS) of EMG
for P1 and P2’s intramuscular electrode channels. Orange lines show the median, blue box shows the interquartile range (IQR),
black dashed lines show the most extreme non-outlier values and red crosses show outliers more than 1.5 times the IQR.

(0.44 µV). On the other hand, the EMG RMS range
was higher across both RPNIs and residual muscles,
with median of 148.2 µV (45.1 µV) for P1 and
39.6 µV (40.5 µV) for P2 (figure 2(b)). Therefore, the
variability of SNR was likely driven by the variabil-
ity of the EMG signal rather than shifts in electrode
noise.

3.2. Prosthetic grasp classification remains high
without recalibration
In a real-world environment, users prefer not to recal-
ibrate their control system every day to achieve high
accuracy. To quantify the long-term prosthesis per-
formance using intramuscular signals, we evaluated

our participant’s ability to use the same decoder
parameters over a period of 16 months. P2 used a
four-grip (Rest, Fist, Two-finger pinch, Index fin-
ger point) Hidden Markov Model based classifier
(HMM-NB) to complete a posture switching virtual
task. She completed the task inmultiple armpositions
without recalibration from the original training ses-
sion (seemethods). Across all sessions, P2 successfully
maintained a 1 s hold within a 5-s timeout period on
100% of all trials without recalibration up to 604 d
following electrode implantation. Decoder accuracy
measured every 50 ms, which accounts for transition
errors, remained above 94% with no significant lin-
ear decrease in performance across sessions (p= 0.11,

6
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Figure 3. Online four-grip classifier decoding performance across time without recalibration. (a) Decoding accuracy was
measured every 50 ms, accounting for transition errors that occurred within each trial. Performance was quantified over four
different arm positions: arm at side (blue), arm raised (navy blue), arm front (gold), and arm across (red). (b) Cumulative
decoding performance within each session showed no significant linear decreasing performance over time (p= 0.11, F-test).
Gold dashed line represents the linear fit across data points. (c) Timeline of when P2 received RPNIs, electrode implantation, and
when the four-grip classifier was trained. Last quantified decoding session occurred 1424 d after RPNI creation.

F-test) (figure 3). Across different arm positions,
there was a significant difference in the occurrence of
transition errors per trial between arm at the side and
arm raised (p < 0.05, one-way ANOVA with Bonfer-
roni correction for multiple comparisons). The num-
ber of transition errors between other postures was
not significant (p = 0.052 between arm raised and
arm front, p = 0.38 between arm raised and arm
across, p = 1.00 between arm to the side, arm front,
and arm across).

The mean decoder accuracy per timestep across
all 16 sessions was 95.6%, 94.1%, 96.3%, and 96.2%
for arm at the side, arm raised, arm in front, and
arm across, respectively (figure 4(a)). The few grip
misclassifications that did occur were between fist
and pinch, and fist and point. To better under-
stand the cause for the misclassifications, we decom-
posed the six-channel EMG inputs into 2D space
using ICA with dimensionality reduction using prin-
cipal component analysis (ICAPCA) to visualize the
signal features [69]. This revealed that each grip
maintained visually separable clusters across all ses-
sions, but the clusters remained in proximity with
one another (figure 4(b)). This analysis is particu-
larly helpful for understanding transition errors for
models such as LDA or NB which rely on differ-
ences between classes to make decisions. Results also

explained why the classifier was able to decode point
and pinch with 100% accuracy since they had the
greatest cluster separation, but was susceptible tomis-
classifying between fist and pinch, and fist and point.
Confusion between fist and pinch accounted for 41%
of transition inaccuracies, and this was most appar-
ent during the arm raised position. Lastly, of the
1673 trials performed, 82.5% of trials had predic-
tion speeds of less than 250 ms from EMG onset,
which is well below the 300 ms threshold of perceived
delay between muscle activation and prosthetic hand
movement [70] (figure 4(c)).

3.3. 4-grip classifier translates to real-world task
Next, we determined whether the high decoder clas-
sification accuracy in the virtual task translated to
real world applications where the participant moved
around a physical workspace wearing her prosthesis.
Specifically, P2 completed a physical task using the
same four-grip controller described above without
recalibration. A grip-sequence based activity of daily
living was created to demonstrate robustness and
intuitive control of the four-grip classifier. We asked
P2 to perform a ‘coffee task’ that required grip trans-
itions between fist, pinch, point, and open (finger
abduction). P2 was able to switch between each grip
to smoothly transition from one segment of the task

7
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Figure 4. Breakdown of online decoding performance for each arm position across all sessions. (a) Online confusion matrices
representing the overall accuracy for each grip (rest, fist, pinch, point) at each arm position (arm at side, arm raised, arm in front,
arm across). Confusion matrix captures transition errors to cued grips while P2 controlled the virtual hand in real-time. (b) EMG
mean absolute value (MAV) features from both RPNIs, and residual muscles were decomposed into a two-dimensional space for
cluster visualization. Cluster separation was seen across all grips: rest (light blue), fist (navy blue), pinch (gold), point (red).
Magnitude of the black solid lines represent the contribution each channel provided to each grip. (c) Decoder latency was
measured as the time difference between the onset of new EMG activity and a successful posture. The median (dashed line) and
middle 50% (shading) is overlaid on histograms binned in 50 ms increments (n= 1179 trials). Trials with latency greater than a
second (>1) are aggregated in the orange rectangle.

to the next (movie S1). To quantify grip classification
accuracy, P2 was asked to attempt each segment of the
coffee task up to five times or until she achieved the
correct grip. P2 completed the taskwith 99%accuracy
(n= 5 trials, 125 total movements) with only one task
error (1 in 125) of dropping the coffee pod. Similarly,
grip accuracy was 99% (n= 5 trials, 125 movements)
with one grasp error of transitioning into a fist instead
of a point. From start to finish, P2 completed the cof-
fee task in 61.3 s ± 6.34 on average (n = 5 trials).
The continuous and segmented coffee task sessions
were completed 590 and 611 d post-decoder training,
respectively.

3.4. Offline nine-grip classifiers decreased in
performance without recalibration
Lastly, we wanted to determine how well pattern
recognition systems performed without recalibra-
tion with more than four movements. In an off-
line analysis, we trained eight additional movements
(thumb flexion (T), index finger flexion (I), middle
finger flexion (M), ring finger flexion (R), small
finger flexion (S), wrist flexion (WF), finger abduc-
tion (Ab), finger adduction (Ad)) and we simu-
lated performance across three different classifiers—
HMM-NB, single-state NB, and LDA, in both P1 and
P2. The average decoding accuracy across all days
post-decoder training was 75.9%, 75.2%, and 81.2%
(HMM-NB, NB, LDA, respectively; n = 5 sessions)

for P1, and 76.5%, 65.9%, and 79.9% for P2 (n = 7
sessions). All decoders except P2’s LDA had a small
but significant linear decrease in performance across
sessions (p < 0.05, F-test) (figure 5(a)). LDA had the
highest average performance across days, suggesting
that it may be more robust to changes in EMG activ-
ation strength, however the difference was not stat-
istically significant (p = 0.220, Wilcoxon rank sum
test). Unsurprisingly, these results indicate that pre-
dicting an increased number of movements without
recalibration may be more challenging. Most classi-
fication errors occurred between adjacent postures
(abduction and adduction for P1, middle and ring
fingers for P2) (figure 5(b)). These movements were
either primarily controlled by muscles that were not
implanted, or shared ulnar nerve function. Neverthe-
less, accuracy was greater than 80% for five move-
ments across 276 d for P1, and six movements across
463 d for P2.

3.5. RPNIs contribute to the prediction of intrinsic
finger movements
P1 and P2 both had transradial amputations and elec-
trodes implanted into six and five residual innervated
finger and wrist muscles which were used for move-
ment decoding in addition to their RPNIs. To under-
stand the contribution of RPNIs to finger and grasp
prediction, we compared the performance of move-
ment classifiers offline to see which movements were
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Figure 5. Offline decoding analysis of nine movements over time. (a) Decoding accuracy of Hidden Markov Model (HMM-NB),
Naïve Bayes (NB), and Linear Discriminant Analysis (LDA) classifiers over time, without recalibration. Each classifier was trained
on nine finger and wrist movements: rest, thumb flexion (T), index finger flexion (I), middle finger flexion (M), ring finger
flexion (R), small finger flexion (S), wrist flexion (WF), finger abduction (Ab), and finger adduction (Ad). (b) Offline confusion
matrices representing performance of LDA averaged across all sessions (n= 5 and 7 sessions for P1 and P2).

most impacted without input from RPNIs. For P1,
grip accuracy only decreased by 0.7% when remov-
ing RPNI signals, indicating his implanted residual
musclesmay be sufficient to control thosemovements
(figures 6(a) and (b)). Removing RPNIs decreased
overall accuracy by 3.2% for the ninemovement data-
set (figures 6(c) and (d)), and 9.6% for an intrinsic
movement dataset (figures 6(e) and (f)). For P2, grip
accuracy decreased by 9.2% (figures 7(a) and (b)),
accuracy of the nine movement dataset decreased
by 21.3% (figures 7(c) and (d)), and accuracy of
the intrinsic movement dataset decreased by 9.2%
(figures 7(e) and (f)) when RPNIs were removed.

In both patients, RPNIs most strikingly contributed
to accurate prediction of thumb opposition while
also improving the distinction of finger adduction.
For P2, RPNIs also greatly improved prediction of
middle, ring, and small finger movements as well as
distinguishing fist from pinch. These movements are
all either controlled by lost intrinsic hand muscles
or extrinsic muscles that were not implanted (for
instance, FDP small finger was implanted for P1
but not P2). These results are consistent with recent
online control comparisons [71], and indicate that
RPNIs provide valuable control signals when muscles
are lost due to amputation.
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Figure 6. P1 offline decoding performance with RPNIs and residual muscles vs. only residual muscles. (a), (b) Confusion matrices
show a Linear Discriminant Analysis (LDA) classifier predicting four movements for grasp control: fist (F), pinch (Pi), point (Po),
and rest (Re) with and without input from P1’s RPNIs. (c), (d) Prediction performance of the individual finger movements: rest,
thumb flexion (T), index finger flexion (I), middle finger flexion (M), ring finger flexion (R), small finger flexion (S), wrist
flexion (WF), finger abduction (Ab), and finger adduction (Ad), with and without RPNIs. (e), (f) Distinguishing rest and index
finger flexion from four thumb and intrinsic finger movements: thumb flexion, finger abduction, finger adduction, and thumb
opposition (TO), with and without RPNIs.

Figure 7. P2 offline decoding performance with RPNIs and residual muscles vs. only residual muscles. (a), (b) Confusion matrices
show a Linear Discriminant Analysis (LDA) classifier predicting the four movements for grasp control with and without RPNIs.
(c), (d) Prediction performance of the nine individual finger movements analyzed with and without RPNIs. (e), (f)
Distinguishing rest and index finger flexion from the four thumb and intrinsic finger movements with and without P2’s RPNIs.

10



J. Neural Eng. 20 (2023) 026039 P P Vu et al

4. Discussion

Developing a reliable and intuitive upper-limb pros-
thetic control system has been the goal of clini-
cians, engineers, and prosthetic end-users for decades
[15, 72–74]. Without a stable peripheral nerve inter-
face, the potential of controlling multi-articulated
prosthetic hands will be difficult to realize for
people with upper-extremity limb loss. Here, we have
demonstrated that intramuscular electrodes embed-
ded within RPNIs, and residual innervated muscles
can produce high amplitude EMG signals acrossmul-
tiple years in individuals with amputation. The pro-
cess of free muscle graft regeneration, revascular-
ization, and reinnervation has been established for
many years [75–77]. Expanding upon this founda-
tional knowledge, RPNIs utilize a free skeletal muscle
graft which is neurotized by a transected peripheral
nerve or nerve fascicle. As detailed by Srinivasan et al,
the skeletal muscle graft survives through a series of
biologic processes identical to those seen with skin
graft survival: (1) plasmatic imbibition; (2) inoscu-
lation; (3) capillary ingrowth, followed by; (4) form-
ation of large blood vessels [78]. Subsequently, the
healthy skeletal muscle grafts are reinnervated after
the implanted peripheral nerve undergoes axonal
sprouting, elongation, and neuromuscular junctions
(NMJs) formation to create the functional RPNI. The
RPNI can then act as a bioamplifier of efferent motor
action potentials allowing large EMG signals to be
recorded from the RPNI rather than small signals
recorded directly from the peripheral nerve.

Though we recorded reliably large signals from
themuscle grafts and residual innervatedmuscles, the
EMG amplitudes did vary substantially from day to
day, even with nominally consistent attemptedmove-
ments. While there may be some position shifting
effect from the electrodes, we did not observe any
substantial cluster centroid deviation across arm pos-
itions as commonly seen with surface EMG [38].
Thus, day-to-day variability in the EMG may instead
reflect natural variation when attempting the same
movement across days during a task that provides no
visual feedback. Similar results have been reported
for individuals without amputation making move-
ments over time [79]. This creates a challenge for
designing robust classifiers, and more training data
may ultimately be required for algorithms to learn
the full range of possibilities. Techniques developed
for multi-day surface EMG may also be applicable
with intramuscular signals [80, 81]. We may expect
that signals that are reliably high and under voluntary
control would become intuitive to use with closed
loop control. As expected, one of our participants
who used one decoder across 1.7 years can don and
immediately begin using the prosthesis with similar
success from day to day in the lab despite showing
an EMG interquartile range of 40.5 µV. This likely
reflects both an intuitive use of the correct muscles

and consolidated learning from the participant, who
had previously completed grasp control tasks with
the implanted electrodes for another study [63]. Fur-
ther studiesmay show that learning ismuch improved
with a stable relationship to voluntary EMG from day
to day.

While multi-grasp pattern recognition systems
have been around for decades [82] with the first com-
mercial system launched in 2015 (Co-Apt, IBT, Otto-
bock), clinical application of these systems have been
challenging. In particular, offline analysis has shown
performance degradation over time caused by surface
electrode shifting or changes in residual limb position
[38, 83, 84]. In order to improve pattern recognition
decoding performance, complex surface EMG train-
ing paradigms, such as recording EMG at different
arm positions, have been developed [85–88]. How-
ever, these paradigms may be impractical in com-
mercial prosthetic control, as the offline assessments
conductedwithin laboratory conditionsmay not fully
reflect the functional efficacy of pattern recognition
systems in real-world scenarios [89]. A recent take-
home study highlights this challenge, as the users
preferred pattern recognition over direct control for
intuitive switching of hand postures but had to recal-
ibrate their control signals an average of 33 times
during a 148 hour wear time [29]. Our study found
that intramuscular EMG recorded from reinnervated
and residualmuscles provides high enough specificity
and SNR despite changes in absolute voltage levels
to maintain feature separation for consistent pros-
thetic performance over time without recalibration.
Importantly, the HMM-NB was trained only with
five trials of each grasp, while the participant sat
motionless in front of a computer screen. Minimal,
or possibly zero recalibrations using a simple decoder
training protocol may be a desirable characteristic for
upper-limbprosthetic control systems to improve sat-
isfaction and reduce prosthetic abandonment among
prosthesis users [90].

Ultimately, regardless of the surgical preparation
or algorithm used, the large SNR generated from
intramuscular electrodes has proven to be valuable
for better prosthetic control. By comparison, the SNR
from surface EMG is typically in the range of 2–20
and varies depending on tissue thickness and the use
of dry vs. gelled adhesive electrodes [67, 68, 91]. There
are large efforts already underway to better inter-
pret surface EMG [92–94]. Algorithms developed
using surface EMG will likely perform better, or at
minimum more reliably, when used with implant-
able EMG. Simultaneously, the development of more
advanced prosthetic hands with added hardware fea-
tures such as additional DoFs at the thumb and wrist
[95, 96] has the potential to reduce compensatory
movements and prevent overuse injuries. Overall, our
study has demonstrated the long-term robustness of
RPNIs as a peripheral nerve interface. For patients
with transradial amputations, the best performance
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can be achieved with a combination of EMG from
extrinsic residual muscles and EMG from RPNIs as
was done in this study. We observed the RPNIs con-
tributed most to predicting thumb and finger move-
ments controlled by lost intrinsic hand muscles or
extrinsic muscles that were not implanted. Patients
with more proximal amputations may be missing
most or all of their finger or wrist muscles. In these
cases, we expect RPNIs with implanted electrodes
would provide necessary signals for accurate and reli-
able control of multiple hand and wrist functions.
With these promising preliminary results, implant-
able prosthetic hand controllersmay soon become the
standard of care for all upper limb amputations.
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