
Journal of Neural Engineering

PAPER • OPEN ACCESS

Error detection and correction in intracortical
brain–machine interfaces controlling two finger
groups
To cite this article: Dylan M Wallace et al 2023 J. Neural Eng. 20 046037

 

View the article online for updates and enhancements.

You may also like
An artificial intelligence–based pipeline for
automated detection and localisation of
epileptic sources from
magnetoencephalography
Li Zheng, Pan Liao, Xiuwen Wu et al.

-

Structure-function dynamics of
engineered, modular neuronal networks
with controllable afferent-efferent
connectivity
Nicolai Winter-Hjelm, Åste Brune Tomren,
Pawel Sikorski et al.

-

Modulating individual axons and axonal
populations in the peripheral nerve using
transverse intrafascicular multichannel
electrodes
Yuyang Xie, Peijun Qin, Tianruo Guo et al.

-

This content was downloaded from IP address 141.212.145.11 on 30/08/2023 at 21:15

https://doi.org/10.1088/1741-2552/acef95
https://iopscience.iop.org/article/10.1088/1741-2552/acef92
https://iopscience.iop.org/article/10.1088/1741-2552/acef92
https://iopscience.iop.org/article/10.1088/1741-2552/acef92
https://iopscience.iop.org/article/10.1088/1741-2552/acef92
https://iopscience.iop.org/article/10.1088/1741-2552/ace37f
https://iopscience.iop.org/article/10.1088/1741-2552/ace37f
https://iopscience.iop.org/article/10.1088/1741-2552/ace37f
https://iopscience.iop.org/article/10.1088/1741-2552/ace37f
https://iopscience.iop.org/article/10.1088/1741-2552/aced20
https://iopscience.iop.org/article/10.1088/1741-2552/aced20
https://iopscience.iop.org/article/10.1088/1741-2552/aced20
https://iopscience.iop.org/article/10.1088/1741-2552/aced20


J. Neural Eng. 20 (2023) 046037 https://doi.org/10.1088/1741-2552/acef95

Journal of Neural Engineering

OPEN ACCESS

RECEIVED

23 May 2023

REVISED

1 August 2023

ACCEPTED FOR PUBLICATION

11 August 2023

PUBLISHED

25 August 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Error detection and correction in intracortical brain–machine
interfaces controlling two finger groups
Dylan MWallace1,+, Miri Benyamini2,+, Samuel R Nason-Tomaszewski3, Joseph T Costello4,
Luis H Cubillos1, Matthew J Mender3, Hisham Temmar3, Matthew SWillsey3,5, Parag G Patil3,5,
Cynthia A Chestek1,3,4,+ and Miriam Zacksenhouse2,+,∗

1 Department of Robotics, University of Michigan, Ann Arbor, MI, United States of America
2 BCI for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
3 Cortical Neural Prosthetics Lab., Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of
America

4 Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, United States of America
5 Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States of America
+ These authors contributed equally.
∗ Author to whom any correspondence should be addressed.

E-mail: mermz@technion.ac.il

Keywords: error detection, error correction, intracortical brain–machine interfaces, execution errors, linear filters

Abstract
Objective.While brain–machine interfaces (BMIs) are promising technologies that could provide
direct pathways for controlling the external world and thus regaining motor capabilities, their
effectiveness is hampered by decoding errors. Previous research has demonstrated the detection
and correction of BMI outcome errors, which occur at the end of trials. Here we focus on
continuous detection and correction of BMI execution errors, which occur during real-time
movements. Approach. Two adult male rhesus macaques were implanted with Utah arrays in the
motor cortex. The monkeys performed single or two-finger group BMI tasks where a Kalman filter
decoded binned spiking-band power into intended finger kinematics. Neural activity was analyzed
to determine how it depends not only on the kinematics of the fingers, but also on the distance of
each finger-group to its target. We developed a method to detect erroneous movements,
i.e. consistent movements away from the target, from the same neural activity used by the Kalman
filter. Detected errors were corrected by a simple stopping strategy, and the effect on performance
was evaluated.Main results. First we show that including distance to target explains significantly
more variance of the recorded neural activity. Then, for the first time, we demonstrate that neural
activity in motor cortex can be used to detect execution errors during BMI controlled movements.
Keeping false positive rate below 5%, it was possible to achieve mean true positive rate of 28.1%
online. Despite requiring 200ms to detect and react to suspected errors, we were able to achieve a
significant improvement in task performance via reduced orbiting time of one finger group.
Significance. Neural activity recorded in motor cortex for BMI control can be used to detect and
correct BMI errors and thus to improve performance. Further improvements may be obtained by
enhancing classification and correction strategies.

1. Introduction

Spinal cord injury (SCI) leading to quadriplegia or
paraplegia affects approximately 300 000 people in
the United States [1]. A subset of those affected by
SCI are unable to interact with the environment
due to dysfunctional hands and arms. Autonomy is

significantly impacted, and self-care must be done by
a caretaker. Recent improvements in brain record-
ing and in robotic kinematics have provided an
opportunity for those with SCI to regain natural
body movement. Brain–machine interfaces (BMI)
bypass the spinal cord and the non-functioning limb
by sampling brain activity to control robotic limb
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movement or some other output device such as a
keyboard [2].

BMIs, whether invasive or not, are prone to
prediction errors [3–5]. In typical closed-loop BMI
applications, the user receives visual feedback about
the action taken by the BMI, so BMI errors would
evoke error-processing in the user’s brain [3, 6].
Neural correlates of error processing have been invest-
igated extensively using electroencephalogram (EEG)
[7–10], and the resulting potentials are known as
error-related potentials (ErrPs). Different ErrPs were
associated with outcome errors, i.e. failures to per-
form the task, and execution errors, i.e. deviations
between the executed and expected movement [7,
11]. There is a great interest in detecting ErrPs online
to improve EEG-based BMI applications, including
automatic correction of the selected character in P300
spellers [12, 13], and automatic undoing and even
correction of discrete robotic actions [14, 15].

Error signals have also been detected from intra-
cortical neural activity from premotor and primary
motor (M1) cortices to improve invasive BMIs [4].
Using a cursor grid task, Even-Chen et al demon-
strated that outcome errors can be detected from
single trials with high accuracy and that preventing or
deleting erroneous selections significantly improved
performance. However, that study focused on detect-
ing outcome errors, at the end of a trial, rather than
execution errors during a movement. Thus, correc-
tion was limited to undoing erroneous selections
rather than continuously correcting the movement.

Neural correlates of error-processing have also
been investigated using fMRI with humans [16].
Execution errors were introduced by sensorimotor
rotations or force fields. In both cases, execution
errors activated regions along the central and post-
central sulci. In particular, clusters in the arm area
of the contra-lateral M1 were significantly more
activated in reaching movements with perturbations
than without. In another study, involving invasive
BMI experiments with non-human primates, it was
demonstrated that the modulations in neural activ-
ity recorded from M1 and premotor dorsal (PMd)
increase after switching to brain control [17], and
that this can be attributed to increasing process noise
due to imperfections in the BMI filter [18]. Thus, we
hypothesized that the neural activity recorded in the
motor cortex includes information about BMImove-
ment errors.

In our earlier work [19] we focused on invas-
ive BMI experiments with non-human primates
involving the control of a single finger. Neural activity
was recorded with a micro-electrode array implanted
in the hand area of precentral gyrus (PCG) to capture
motor cortex activity. We demonstrated that it is pos-
sible to differentiate between correct and erroneous
movements based on the recorded neural activity.
However, detection was performed offline and was
not used to correct the BMI.

Here we extend our earlier work with invas-
ive BMI experiments to include online error mon-
itoring and correction while two non-human prim-
ates controlled either a single or two finger-groups.
Our work addressed the following research questions:
(1) does the neural activity recorded in motor cor-
tex encode the distance of individual finger groups
to the target, and thus can continuous execution
errors be seen in patterns of neural activity? (2) How
well can erroneous movements be detected based on
the neural activity recorded in motor cortex both
offline and, most importantly, online? and (3) Is
it possible to improve the operation of the BMI
by correcting the movements that are detected as
erroneous?.

2. Methods

2.1. Experimental setup
Two adult male rhesus macaques (Monkey W
and Monkey N) were implanted with Utah arrays
(BlackrockMicrosystems, Salt Lake City, Utah) in the
hand area of PCG, which typically includes both M1
and PMd in monkey cortex, and one monkey was
additionally implanted with a Utah array in sens-
ory cortex (not used in this study), as shown in
figure 1(a). The arrays in both monkeys were over
one year old at time of study. The monkeys were
trained to sit in a chair and use a handmanipulandum
to control virtual fingers on a screen and move the
virtual fingers to target positions, as illustrated in
figure 1(b). The angles of the virtual fingers were
determined from bend sensors embedded within the
hand manipulandum.

Neural datawas recorded from96 channels within
the motor cortex and processed via a Cerebus neural
signal processor (Blackrock Microsystems). Spiking-
band power (SBP), which was demonstrated to be
well correlated with single-unit activity by Nason et al
[20], was used as the neural feature. The quality of
the neural signals was inspected visually, during daily
setup, and channels with visible noise were excluded
from decoding and analysis. Channels were refer-
enced to the average activity of all the remaining chan-
nels as detailed in Ludwig et al [21]. During the exper-
imental days analyzed in this study, the number of
channels representing an average firing rate over 1Hz
(a baselinemetric for spiking activity) ranged from 20
to 47 channels forMonkeyNand 11 to 19 channels for
Monkey W, as detailed in the last column of table 2.
Monkey N was observed to have more tuned neural
signals and better task performance than Monkey
W in both offline and online control. Differences
in decoder performance between monkeys is expec-
ted due to the differing brain area targeting, levels
of motivation and behavioral performance observed
between monkeys [22].

MonkeyWperformed a single degree-of-freedom
finger task, detailed in Vaskov et al [23] while
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Figure 1. Experimental setup: (a) surgery photos of Utah array implants in both monkeys in the top two panels, and representative
spikes from Monkey N’s array in the bottom panel, (b) block diagram demonstrating the flow of information used in the error
detection and correction task: neural activity and finger movements are recorded during hand control to train a Kalman filter as
the monkey acquires visual targets on a screen; the Kalman filter is then controlled online to train an error classifier; the error
classifier is then run in parallel, and detected errors can be corrected by modifying the output of the Kalman filter.

Figure 2. Sequence of events during the two-finger task performed by Monkey N. A trial starts when new targets appear, and the
time until a specific finger-group first enters its target is the time to first acquire (TFA). First-finger and Second-finger refer to
either the index-finger or MRS finger-group, depending on which finger group first enters its target. Orbiting time (OT) is the
duration between TFA and the time after which the finger-group remains in target (until the end of trial), and thus is
finger-dependent. For successful completion of the task, both fingers have to remain in the target during the hold time. Total time
to target (TTT) is the total trial time minus the hold time. TTT depends on both fingers, and is thus finger-independent. The
single-finger task, performed by Monkey W, is similar but involves only one finger, so hold time starts when that finger remains in
target till the end of trial.

monkey N performed a two-finger task, previously
developed in Nason et al [22]. Figure 2 outlines the
sequence of events during the two-finger task and
its simplification in the single-finger task. In the
single finger task, the monkey acquired a single tar-
get in each trial by moving the index, middle, ring,
and small fingers as a single group. For successful
completion of the task, the monkey was required
to hold the virtual fingers within the target range
for a predetermined hold time (750ms for offline
training and 500ms for online control). For the

two-finger task, the monkey used two individual
finger-groups to acquire two simultaneous targets
along corresponding arcs: the index finger, and the
middle-ring-small (MRS) finger-group. The hold
time started when both finger groups were in their
respective targets, as indicated in figure 2.

2.2. Experimental phases
In order to enable online error monitoring and
correction, we developed two decoders that extract
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Figure 3. Block diagram of the four phases of the experiment and the two training sessions. Monkey N performed all four phases,
while Monkey W performed only the first three phases. Data collected during finger control (phase I, 500 trials) was used to train
the Kalman Filter (KF) decoder for finger movement. This decoder was used during all the phases of brain control to decode the
neural activity and control the virtual fingers accordingly. Data collected during initial brain control (Phase II, over 500 trials) was
used to train the error detectors. The error detectors were evaluated in parallel with the KF decoder, based on the same neural
activity, to monitor errors (Phase III, over 400 trials) and to correct detected errors (Phase IV, over 400 trials). Phases III and IV
were alternated in an ABA fashion.

different information from the same neural activ-
ity: (1) a velocity decoder that determines the com-
mand to the virtual fingers, as detailed in section 2.1,
and (2) an error detector that detects activity evoked
by erroneous movements, as detailed in section 2.4.
The velocity decoder and error detector were trained
based on data collected during the first two phases of
the experiment, respectively, as illustrated in figure 3.
The performance of error monitoring and error cor-
rection was evaluated in the last two phases, which
were performed only by Monkey N.

The four experimental phases are detailed in
figure 3. During Phase I, the monkeys performed 500
trials of the finger task (finger control), while neural
data and finger kinematics were simultaneously col-
lected. The recorded data was binned (50ms) and
used to train a velocity-based Kalman filter (KF)
decoder, as detailed in [22]. During the following
phases (brain control, Phases II, III, and IV), the
trained KF was used online to decode the measured
neural activity and control the movements of the
virtual fingers. During brain control the monkey’s
hands were not restricted, but the kinematics of the
fingers had no direct effect on the decoder output
except for their effect on the recorded neural activity.
Data recorded during initial brain control (Phase II,
over 500 trials) was used to train error detectors for
each finger group and each movement type (flexion

or extension) from incoming neural data, and to
determine their thresholds, as detailed in section 2.4.

During the next two phases, the trained error
detectors were evaluated online in parallel with the
KF decoder. During phase III (brain control with
errormonitoring, over 400 trials), the velocities of the
finger-groups were controlled exclusively by the out-
put of the KF decoder. However, during phase IV, the
output of the KF decoder was corrected online when
erroneous movements were detected (brain control
with error correction, over 400 trials), as detailed in
section 2.6.

To asses the effect of error correction, another
phase of brain control with error monitoring was
conducted, without error correction (not shown in
figure 3). Thus the last part of the experiment fol-
lowed an ABA format, where A and B refer to brain
control with error monitoring and with error correc-
tion, respectively. Experimental days were excluded
from analysis if the first run of brain control with
error monitoring (A) contained less than 400 trials
within the allocated time of 12.5min. This was done
to ensure that the monkey performing the trials was
not losing motivation during this run, and thus the
comparison between runs is valid.

All experiments were conducted using xPC Target
version 2012b (Mathworks) which logged incom-
ing neural activity from the Cerebus processor and
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finger positions from the bend sensors every 1 ms.
Training of both KF decoders and error detect-
ors was performed in MATLAB versions 2012b or
2021b (Mathworks), and parameters were uploaded
to files located on a central storage server. In online
experiments a computer running Python 3.7, named
the eXternal Graphic Processing Computer (xGPC),
received binned neural data every 50ms from the xPC
Target computer via network interface, and the KF
decoders and error detectors were run in real-time
using this data. Finger positions and error classific-
ations were sent back to xPC Target from the xGPC
every 50ms via network interface to update the vir-
tual fingers, using the software architecture detailed
in [24]. Real-time kinematics, classification output
(when available), and target data were collected for
offline analysis.

2.3. Variance analysis
It is commonly assumed that the neural activity can be
related to the kinematics of arm movements, includ-
ing position, velocity and speed, via a linear model
[25–29] or generalized linear model [30, 31]. It has
recently been demonstrated that SBP is related to the
kinematics of the finger groups, including the posi-
tion of each finger-group (i.e. distance along the cor-
responding arc), P, and its rate of change, V [22].
Here, we assess the hypothesis that the neural activ-
ity also encodes the distance to the target. Specifically,
we assess the hypothesis that the distance D= T− P,
between the position of a finger-group, P, and its tar-
get, T, contributes significantly to estimating the SBP.
First we consider a single lag model, which relates the
neural activity in bin k to the kinematics at a single lag
l, i.e. to the kinematics at a single-bin k+ l

ˆSBP(k) = g[ωPI(l)PI(k+ l)+ωPMRS(l)PMRS(k+ l)

+ωVI(l)VI(k+ l)+ωVMRS(l)VMRS(k+ l)

+ωDI(l)DI(k+ l)+ωDMRS(l)DMRS(k+ l)

+ω0] + ϵ(k, l) (1)

where ˆSBP is the estimated SBP, P∗,V∗ andD∗ are the
position, (scalar) velocity and distance to the target of
the index or MRS finger-groups, as indicated by the
subscripts I and MRS, respectively, ω∗ are the corres-
ponding regression weights, ω0 is the bias parameter,
l is the lag, ϵ(k, l) is the residual error, and g is a linear
or an exponential function, for linear or generalized
linear models, respectively. Here we evaluate only the
linear model.

We also evaluate the multi-lag model, which
extends the single-lag model to account for the
kinematics in multiple-lags. Considering the linear

model, the neural activity in bin k is related to the kin-
ematics in 2L+ 1 lags around the neural activity:

ˆSBP(k) =
L∑

l=−L

ωPI(l)PI(k+ l)

+
L∑

l=−L

ωPMRS(l)PMRS(k+ l)

+
L∑

l=−L

ωVI(l)VI(k+ l)

+
L∑

l=−L

ωVMRS(l)vMRS(k+ l)

+
L∑

l=−L

ωDI(l)DI(k+ l)

+
L∑

l=−L

ωDMRS(l)DMRS(k+ l)+ω0 + ϵ(k).

(2)

The coefficient of determination, R2, between ˆSBP,
and the actual SBP describes the fraction of the vari-
ance in the actual SBP that is captured by the cor-
responding model. The contribution of the distance
to the target is assessed by comparing R2 with and
without the distance to the target.

2.4. Error detection
Erroneous movements are those that move away
from the target, while correct movements are those
that move toward the target. We hypothesized that
the neural activity, and in particular SBP, encodes
whether movements are erroneous or not. While
erroneous movements may occur during finger con-
trol they are much more prevalent during brain con-
trol. Thus, we trained the error detectors on data
from initial brain control and tested their perform-
ance during brain control with error monitoring and
during brain control with error correction.

To avoid confusion and facilitate error detection,
we focused on detecting erroneous movements last-
ing N bins. Thus, a moving window of N bins was
used to generate overlapping movement segments.
Segments were labeled as ‘toward’ or ‘away’ if the
decoded velocity in each of the N bins was toward
or away from the target, as shown in figure 4(a) for
N = 4, and were unlabeled otherwise. The parameter
N was selected based on the variance analysis detailed
in sub-section 3.1.1, which indicated that the neural
activity lags the distance to the target by 4–5 bins.

Figure 4(b) depicts the resulting labels for a typ-
ical section of 10 s of initial brain control recorded
during an experiment with Monkey W. Decoded fin-
ger positions are plotted in blue, target locations in
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Figure 4. Labeling movement segments as ‘toward’ or ‘away’ from the target. (a) Segments are labeled as ‘toward’ or ‘away’ from
the target if the movement in the last N bins is consistently toward or away from the target (here N= 4). (b) A typical 10 s of
decoded finger positions (blue) recorded fromMonkey W during initial brain control (day 2) along with target locations
(light-yellow) and their centers (dashed black). Toward and away segments (of N= 4 bins) are marked by yellow and purple
pluses (‘+’), respectively, on top of the graphs.

light-yellow and their center in dashed black. The cor-
responding labels of segments of N = 4 bins toward
and away from the target are marked by yellow and
purple pluses (‘+’), respectively, at the top. It is
important to note that even when the monkeys even-
tually acquired the target and performed the task
successfully, the movement may not have been con-
sistently toward the target but may have included
segments away from the target. This is apparent in
figure 4(b), e.g. just before 8 s when the 3 consecut-
ive purple ‘+’ s mark a segment in which the index
finger moved away from the target, and just after 12 s
when the 9 consecutive purple ‘+’ s mark a segment
in which the index finger moved outside the target.

Labeled segments were separated into three
groups depending on the decoded velocity: con-
sistent flexion, consistent extension, or inconsistent
movement. Labeled segments in the two consistent
movement groups were used to train separate error
detectors for each finger group and movement type,
while segments with inconsistent movement type
were excluded. This resulted in two error-detectors
for Monkey W and four error-detectors for Monkey
N, one for each movement type of each finger group.
The input to the error-detectors was N samples of
SBP from the channels used by the KF.

Each error detector was trained on a balanced
set of labeled training segments (same number of
‘toward’ and ‘away’ segments). The threshold was

selected from the receiver operating curve (ROC)
estimated from a balanced set of labeled validation
segments. The ROC describes the trade-off between
true positive rate (TPR, i.e. the rate at which segments
away from the target are correctly classified as such)
versus false positive rate (FPR, i.e. the rate at which
segments toward the target are mistakenly classified
as away from the target). Thresholds were selected to
limit FPR below 5%, or to obtain the minimum pos-
itive FPR if it remained above 5% for all the evaluated
thresholds. ROCs are also useful for comparing the
performance of different classifiers. Better classifiers
are characterized by larger TPRs for the same FPRs,
and thus by a larger area under the ROC curve (AUC).

We considered three well-known classification
methods: (1) step-wise linear discriminate analysis
(SWLDA, [19]), (2) quadratic discriminate ana-
lysis (QDA), and (3) linear support vector machine
(SVM). In order to determine which method is most
appropriate, we compared the performance of these
methods on data recorded during initial brain con-
trol using five-fold cross-validation. For each fold,
the error-classifier was trained on 80% of a bal-
anced set of labeled segments and the threshold selec-
ted from the ROC computed from the remaining
20%. Table 1 compares the resulting average TPRs
and FPRs, on four typical days, two per monkey.
Recall that performance improves as FPR decreases
and TPR increases. Hence, while most differences in
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Table 1. Comparison of error detection with different classifiers during initial brain-control. True positive rate (TPR) and false positive
rate (FPR) estimated using five-fold cross validation from data recorded during initial brain control. Thresholds were selected to limit
FPR below 5%, or to obtain the minimum positive FPR if it remained above 5% for all the evaluated thresholds. MRS,
middle-ring-small; SWLDA, step-wise linear discriminate analysis; QDA, quadratic discriminate analysis; SVM, Support vector
machine. Best performance for each combination of monkey, day, finger group and direction of movement is marked in Bold along with
the corresponding classifier.

Monkey N Monkey W

day 1 day 2 day 1 day 2

FPR TPR FPR TPR FPR TPR FPR TPR

Index SVM 5.4 62.4 5.3 68.9 5.1 42.6 5.3 32.7
Extension QDA 5.4 48.8 5.5 53.6 5.1 44.4 5.3 52.2

SWLDA 4.1 63.8 4.2 78.0 2.8 44.8 3.5 46.9

SVM 5.2 62.9 5.0 53.7 8.8 77.4 5.4 45.8
Flexion QDA 8.2 46.1 5.0 28.8 8.8 84.5 5.4 51.8

SWLDA 4.3 62.3 4.0 54.5 3.5 58.9 3.2 63.6

MRS SVM 5.4 53.8 5.3 56.8
Extension QDA 8.3 43.6 5.5 40.9

SWLDA 4.2 56.0 4.7 47.9

SVM 5.2 48.1 5.0 55.4
Flexion QDA 5.5 30.4 5.0 36.2

SWLDA 4.3 35.8 3.9 37.5

performance are not statistically significant, SWLDA
results in better performance in 7 of the 12 cases
(with lower FPRs and either higher TPRs or at least
TPRs within 1% of the best TPR). Furthermore, FPRs
achieved by SWLDA were always the lowest, even
in cases when the TPR achieved by another method
was higher. Given its good performance and ease
of implementation, SWLDA was selected for further
analysis and for online error-classification.

Operational classifiers, i.e. those used online, were
trained on 70% of a balanced set of labeled segments
from initial brain control, and the threshold was
selected from the ROC computed from the remaining
30%. During online operation, the decoded move-
ment of each finger group was monitored to detect
overlapping segments of N = 4 bins in which the
finger-group was consistently flexing or extending.
The corresponding neural data (from theN = 4 bins)
was sent to the corresponding error-classifier for the
relevant finger-group and movement type. Finally,
the output of the classifier determined whether the
movement was erroneous or not.

Further analysis was conducted to investigate how
error-detection is affected by the location of the vir-
tual fingers, either outside-the-target or inside-the-
target. To assure enough training samples, this ana-
lysis was conducted on labeled segments from both
initial brain control and the two phases of brain con-
trol with error monitoring. Three sets of classifiers
were trained on balanced sets of: (a) all the labeled
segments, (b) labeled segments outside-the-target,
and (c) labeled segments inside-the-target. For fair
comparison, the same number of training samples
were used in each case (limited by the small number of

labeled segments outside-the-target). The perform-
ance of the resulting classifiers was evaluated using
five-fold cross-validation.

2.5. Error correction strategy
In order to design an error-correction strategy, we
investigated the distributions of the distance of the
decoded finger position to the target, under four con-
ditions: (1) distances at each time sample (total),
(2) distances when erroneous movements occurred
(errors), (3) distances when erroneous movements
were correctly detected as erroneous (TPs), and (4)
distances when correct movements were incorrectly
classified as erroneous (FPs). Figure 5 presents the
normalized histograms of the distance of the MRS
finger-group to its target (in arbitrary units) during
six sessions of brain control with error monitoring
(without correction) performed over three days with
Monkey N (Days 1–3). Dashed lines mark the target
boundaries.

The means and standard deviations of the dis-
tances are 0.0013± 0.19 for all movements (total)
and −0.0067± 0.15 when erroneous movements
occurred. The standard deviations are relatively large,
and in particular larger than the size of the target,
due to the long tails of the distributions. Nevertheless,
68% of the total distances and 64% of the distances
when erroneous movements occurred were within
the boundaries of the target. Thus, we opted to cor-
rect erroneous movements with a stopping strategy.
Stopping is a good compromise between slowing and
reversing erroneous movements. To assure meaning-
ful correction and avoid oscillations and deadlock, we
devised the following two-step stopping strategy: (a)
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Figure 5. Normalized histograms of the distance of the MRS finger-group to its target (arbitrary units) during six sessions of
brain control with error monitoring (without correction) performed over three days with Monkey N (days 1–3). When the
distance is close to zero, the movements are usually not consistently away or toward the target, so there is a dip in the histogram of
erroneous movements. Upper panel: distance during all movements (total, black) and during erroneous movements (Errors,
blue). Lower panel: distance during TPs (green) and FPs (red). Grey dashed lines represent the range of the target.

movement was stopped for N bins (4–5 bins, 200–
250ms), (b) correction was paused for the next 2N
bins (8–10 bins, 400–500ms).

2.6. Error correction implementation and
evaluation
Online correction was applied to the current output
of the KF whenever an error detector detected an
erroneousmovement. The correction was implemen-
ted within the Python environment and the correc-
ted kinematics was sent back to both the KF for the
next update and to the xPC to control the virtual fin-
gers. Error classifications were also sent to the xPC
and logged there for offline analysis.

Variousmetrics are used to assess online perform-
ance of BMIs. In this study, we focus on two metrics:
(a) orbiting time (OT), and (b) total time to target
(TTT). As illustrated in figure 2, OT is the duration
between the time a finger-group first enters the target
(time to first acquire, TFA), and the time after which
it remains in target until the end of trial. OT depends
on the finger-group, and can be zero if the finger-
group never leaves the target after TFAuntil the end of
trial. TTT is the total time of the trial minus the hold
time. Since trials ended only after both finger-groups
remained within the target range for the hold dura-
tion, TTT is independent of the finger-group. These
metrics assess the speed and accuracy of online task
performance rather than the accuracy of error classi-
fication, which was assessed by the ROC.

The hypotheses that TTT andOT are shorter with
error correction than without error correction were
tested using one-sided Wilcoxon rank-sum test. The
analysis was performed by comparing all trials from
the first phase of brain control with error correction
(B, see section 2.2) with all trials from the preceding

and proceeding phases of brain control with error
monitoring only (A, see section 2.2).

3. Results

3.1. Offline analyses
Offline analysis was conducted on neural activity
(binned SBP) recorded during finger control and ini-
tial brain control performed by Monkey W (single-
finger task, two different days) and Monkey N (two-
finger task, six different days).

3.1.1. Variance analysis
Figure 6 presents typical graphs of percent variance of
neural activity that is explained by different kinematic
variables (position, P, velocity, V and distance to tar-
get D) and their combinations (VP and VPD), during
finger control performed by Monkey N (figure 6(a))
and Monkey W (figure 6(b)). The left and middle
panels depict the percent variance of neural activity
that is explained by a single-lag model (equation (1))
as a function of the relative lag, where negative lags
correspond to neural activity that occurs after the
kinematics. The percent variance of the neural activ-
ity that is explained by the velocity peaks at 0ms or
−50ms for Monkey N and Monkey W, respectively,
while the percent variance explained by the distance
peaks when the neural activity lags the distance by
−200ms or −250ms, respectively. Finally, the per-
cent variance explained by the position peaks when
the neural activity leads the position by 300ms for
Monkey N and by over 500ms for Monkey W.

The lag between the neural activity and the dis-
tance agrees with the interpretation that the neural
activity is related to processing the observed distance
to the target. In any case, the peak of the variance
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Figure 6. Percent variance of neural activity explained by velocity (V) position (P) distance to target (D), and their combinations
(VP and VPD) during finger control performed by Monkey N on day 1 (a) and Monkey W on day 2 (b). Left and middle panels
depict the mean percent variance explained by a single-lag model (equation (1)) as a function of the relative lag between the
neural activity and the kinematics, where negative lags correspond to neural activity that occurs after the kinematics. Right panels
depict the mean percent variance explained by a multi-lag model (equation (2)), as a function of the size of the interval of lags.
Bars indicate standard error of the mean.

of the neural activity that is explained by the dis-
tance cannot be attributed exclusively to the vari-
ance explained by the velocity since the peak correl-
ation between the distance and the velocity is only
0.71 for monkey N and 0.75 for Monkey W and the
correlation between the distance and the position is
negligible (correlations are not shown). The hypo-
thesis that the neural activity is related to the distance

independently of the velocity is further supported by
the right panels of figure 6, which depict the percent
variance of the neural activity explained by a multi-
lag model (equation (2)) as a function of the interval
of lags. Focusing on the interval that ends at the lag
at which the percent variance explained by the dis-
tance peaks (i.e. (−200,200)ms forMonkey N and at
(−250,250)ms for Monkey W), VPD is significantly
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Figure 7.Maximum percent variance of neural activity at a single history bin explained by either the distance to the target (y-axis)
or the velocity (x-axis) for each channel during finger control. Only channels used by the Kalman filter are shown. The channels
marked by orange circle are also used by the SWLDA error classifier. (a) Monkey N, day 1, (b) Monkey W, day 2.

larger than the percent variance explained by VP
(p< 0.05), one-sidedWilcoxon test). The same beha-
vior was observed in all the days that were analyzed
(six days with Monkey N and two days with Monkey
W). Additional significance analysis, comparing the
percent variance explained by P, V and D, is detailed
in appendix A.

While we focus mainly on encoding of the dis-
tance to the target, we also note that the lag between
the neural activity and position may be attributed to
encoding of the desired or expected position. In any
case, the peak of the variance of the neural activity
that is explained by the position cannot be attributed
exclusively to the variance explained by the velocity
since the cross-correlation between the position and
velocity is small (below 0.1 in magnitude) and does
not exhibit a peak (correlations not shown).

Thus, the neural activity encodes not only the pos-
ition and velocity but also the distance to the target.
This suggests that changes in neural activity across
multiple bins includes information aboutwhether the
fingermoves away or toward the target, as the distance
to the target would increase or decrease, respectively.

3.1.2. Channel contribution
Additional analysis was conducted to investigate how
different channels contribute to velocity and distance
encoding in those days, and which channels were
picked for error-detection. For that purpose, themax-
imum percent variance of neural activity that can be
explained by each kinematic variable at a single lag
was determined. Figure 7 depicts the maximum per-
cent variance explained by the distance to target as a
function of the maximum percent variance explained
by the velocity for each channel that was used by the
KF, for Monkey N (left panel) and Monkey W (right
panel). Interestingly, the relationship is close to linear
(R2 = 0.94 and R2 = 0.98 forMonkey N andMonkey

W, respectively), suggesting that channels that actively
encode the velocity are also active in encoding the dis-
tance to target.

Channels for which at least one bin of their activ-
ity was picked by the SWLDA to detect erroneous
movements are marked by red circles (66.7% and
31.2% of the channels used for the KF were picked by
the SWLDA for Monkey N and Monkey W, respect-
ively). Interestingly, the channel with the highest per-
cent of variance that is explained by distance was
picked by the SWLDA for both monkeys. However,
at least for Monkey W, other channels for which the
distance explains a large percent of the variance of
the neural activity were excluded. In contrast, many
of the channels picked by the SWLDA classifiers were
those for which only a small percent of variance was
explained by the distance.

To better understand these phenomena, we
trained two additional sets of error-detectors based
on the data recorded during initial brain control per-
formed by Monkey W. The first set was forced to use
the eight channels with percent variance explained
by distance larger than 10%. The resulting ROCs
were very similar to those obtained with the standard
SWLDA, with AUC within 2% of each other. This
indicates that those channels do not encode addi-
tional information about erroneous movements.

The second set of error-detectors was trained
without the channels for which the distance explains
less than 2%. The resulting ROCs were worse than
those obtained with the standard SWLDA with above
25% reduction in the AUCs. A possible explanation
might be that even the small percent of variance
explained by distance by those channels was import-
ant since it was not correlated with the activity of the
other channels picked by the SWLDA. Furthermore,
those channels may encode other signals involved
in error processing, including the deviation between
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Figure 8. Receiver operating curves (ROCs) of the operational classifiers for each finger-group and movement type (flexion and
extension) computed from a balanced set of labeled validation segments recorded during initial brain control. ROC describes the
trade-off between true positive rate (TPR, i.e. the rate at which segments away from the target are correctly classified as such)
versus false positive rate (FPR, i.e. the rate at which segments toward the target are mistakenly classified as away from the target)
as the threshold is varied. Vertical dashed lines indicate the FPR= 5% limit. (a) Monkey N, day 1. (b) Monkey W, day 2.

Table 2. Offline performance evaluated from data recorded during initial brain control. ‘M’ and ‘D’ denote the Monkey and day. ‘T’ and
‘F’ denote TPRs (true positive rate) and FPRs (false positive rate) evaluated from ROCs computed from validation data. ‘A’ denotes AUC
(area under the receiver operating curve). MRS represents the middle-ring-small finger group. FC denotes the number of firing channels
with an average firing rate over 1 Hz.

Flexion Extension

Index MRS Index MRS

M D F T A F T A F T A F T A FC

N

1 4.9 21.5 0.83 2.1 8 0.76 4.5 44.2 0.87 3.5 35.7 0.87 26
2 3.5 23.7 0.85 3.7 15.5 0.81 3.9 58.3 0.93 3 26.2 0.84 35
3 3.9 51.6 0.91 4.6 19.4 0.74 4.3 34.9 0.84 3.5 17.2 0.82 20
4 3.4 14.2 0.73 3.1 14.2 0.81 2.2 64.7 0.95 3.7 10.3 0.76 41
5 4 24.1 0.80 4.6 16.1 0.75 4 24.2 0.81 4 33 0.84 47
6 4.5 35.1 0.86 3.6 19.5 0.79 4.6 34.9 0.86 4 29.5 0.80 32

W
1 3.6 18.2 0.75 2.2 7.9 0.61 19
2 4.3 25 0.80 3.8 25.5 0.80 11

the actual and expected position or control signals
required to correct the movement.

3.1.3. Classifier performance
Offline performance of the operational error-
classifiers was quantified by the ROC (see section 2.4).
Typical ROCs, evaluated on validation data collected
during initial brain control performed by Monkey N
and Monkey W, are depicted in figure 8. The limit
of FPR equal to 5% is marked by a dashed vertical
line. The best TPRs for FPR below 5% are listed in
the corresponding lines in table 2 (day 1 for Monkey
N and day 2 for Monkey W), along with the AUCs.
Results from five additional days with Monkey N and
an additional day with Monkey W, are also listed.
While FPRs are close to 5% (ranging from 2.1% to
4.9%) by design, TPRs range from 7.9% to 64.7%
depending on the day, finger-group and movement

type, with mean 26.9% (mean of 28.2% for the 6
days withMonkey N and 19.2% for the two days with
Monkey W).

The results reported in table 2 indicate that the
variability in TPRs is associated with the variability
in AUCs, which range from 0.61 to 0.95. Specifically,
TPRs increase with AUCs with R2 = 0.73 when con-
sidering the data from both monkeys, and R2 = 0.81
when considering only the data fromMonkey N. This
implies that the overall quality of the detection varied,
and not only the highest TPRs for FPRs below 5%.
This variability cannot be attributed to the variabil-
ity in the number of firing channels (channels with
average firing rate above 1Hz, see section 2.1), repor-
ted in the last column of table 2 (R2 = 0.02 for data
from both monkeys and R2 =−0.12 for data from
Monkey N only). In particular, the number of fir-
ing channels in the 4th day is second largest, and
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Table 3. Online performance evaluated during brain control with error monitoring and brain control with error correction. TPRs (true
positive rate) and FPRs (false positive rate) obtained online. MRS represents the middle-ring-small finger group.

Flexion Extension

Index MRS Index MRS

Monkey Day FPR TPR FPR TPR FPR TPR FPR TPR

1 2 13.1 2.4 5.6 8.1 40.2 7.4 38.7
N 2 2.7 16.8 5.7 23.7 4.1 57.1 4.9 29.8

Figure 9. Examples of real-time error detection during a 30 sec section of brain control with error detection performed by
Monkey N on day 1. Decoded finger positions (blue line) along with target locations (shaded yellow area, centered around the
dashed black line). TPs, i.e. correct classification of movements away from the target’s center as erroneous, are marked with green
stars on the top and FPs, i.e. incorrect classification of movements toward the target’s center as erroneous are marked with red
stars on the top.

indeed on that day the TPR for index extension is
the largest, but the TPR for error-detection during
flexion is poor. We also did not see any correlation
with the sample size (the number of erroneous seg-
ments during initial brain control, which were used
for training and validation). Instead, the variability in
AUCs may be attributed to the information available
in the recorded channels. Specifically, error-detection
would depend on the availability of channels that are
highly tuned to the distance to the target, or to other
signals associated with error processing, for the spe-
cific finger group and type of movement.

3.2. Real-time error detection
Brain control with error monitoring and error cor-
rection was performed by Monkey N during two
days (day 1 and 2), using the error-detectors and
thresholds that were determined using data from ini-
tial brain control. The resulting online performance,
summarized in table 3, indicates that FPRs ranged
from 2% to 8.1% with mean of 4.7%, while TPRs
ranged from 5.7% to 57.1% with a mean of 28.1%.
Comparing to offline performance (for the same two
days), mean online FPR was 1% higher than mean
offline FPR, but remained below the 5% threshold.
Mean online TPR was 1% lower than mean offline
TPR for the same days. Thus, there was only a small
degradation in performance (recall that performance
improves as FPR decreases and TPR increases). It
is important to note that offline performance was

measured from relatively small data-sets (30% of seg-
ments from initial brain control).

Figure 9 demonstrates a typical section of 30 s of
brain control with error monitoring performed by
Monkey N (day 1). The position of the Index finger
and its target are shown in the top panel, while the
position of the MRS finger-group and its target are
shown in the bottom panel. TPs and FPs are marked
by green and red stars, respectively. Cases of correct
error detection (TPs) occurred, for example, when the
index finger moved within the target between 7 and
10 section A case of correct error detection occurred
when the MRS finger-group moved outside the tar-
get around 6 section. Finally, cases of incorrect error
detection (FPs) occurredwhen the target of the index-
finger switched around 19 s and 24 section If these
FPs are corrected, it could degrade performance, and
thus these are the instances we desire to minimize by
restricting FPR to below 5%.

3.3. Online error-correction
Movements that were detected as erroneous were
corrected using the stopping strategy detailed in
section 2.6. Specifically, the velocity of the corres-
ponding finger group was set to zero for N = 4 bins,
and correction was paused for the next 2N= 8 bins.
Representative sections of position and velocity of
the index-finger during brain control with error cor-
rection are presented in figure 10. The time points
when errors were detected are marked by green x’s
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Figure 10. Selected examples of kinematic effects of online correction with Monkey N on day 1. Top panels: Corrected finger
positions (blue line) along with target locations (shaded yellow area, centered around the dashed black line). Bottom panels:
Corrected velocity of the index finger. Corrections in response to TPs are marked by green stars, while corrections in response to
FPs are marked by red stars.

for TPs and red x’s for FPs. Note that after each
error-detection the velocity is zero for four bins. The
left panels depict three instances of correct error-
detection in which error correction kept the finger
within the target long enough to satisfy the hold
condition for both finger-groups. The middle pan-
els demonstrate two instances of correct error detec-
tion: correcting the first one prevented moving in
the wrong direction, while correcting the second one
reduced the overshoot. Finally, the right panels depict
two instances of incorrect error-detection (followed
by one instance of correct error-detection). The first
error-correction, though made by mistake, did not
affect performance (and even facilitated staying in the
target). However, the second error-correction slowed
the movement toward the target and increased the
time to acquire the target. Nevertheless, correcting
these FPs did not severely affect performance com-
pared to other correction strategies such as velocity
reversal, which would have driven the finger further
away from the target.

The average effect of error correction on per-
formance was assessed by evaluating the metrics
described in section 2.6 during brain control with and
without error-correction, and comparing between
them. Figure 11 depicts the results from two exper-
imental days with Monkey N, including TTT, which
depends on both finger-groups, and OT for the MRS
finger-group. Note that inmany trials OT is zero. This
occurred when the finger-group remained within the
target once it entered the target until the end of the
trial. Average TTT and OT went down after starting
error correction (at the AB transition) by an aver-
age of 69.91ms and 118ms for TTT and OT respect-
ively, and went up again after ending error-correction
(after the BA transition) by an average of 19.84ms and
45.8ms for TTT and OT respectively.

To test the significance of these differences in per-
formance, a one-sided Wilcoxon Rank-Sum test was
performed comparing the OT within finger groups
between the error monitoring and error correction
trials. Mean OT for the MRS finger group was found
to be significantly lower with correction on both days
(p = 0.000 26, p = 0.0111) with reductions in OT
of 30% and 23% respectively. This improvement in
OT is consistent with the stopping error correction
strategy, which facilitates remaining within the target.

3.4. Error detection inside and outside the target
Further analysis, detailed at the end of section 2.4,
was conducted to evaluate the effect of the location of
the virtual fingers, either outside or inside the target,
on error-detection. This analysis was conducted on
labeled segments from both initial brain control and
the two phases of brain control with errormonitoring
(the two OFF sections analyzed in figure 11) recorded
during experiments withMonkeyN. For fair compar-
ison, the samenumber of training segmentswere used
for all classifiers. The analysis was performed using
five-fold cross-validation and ROCs were computed
from validation results in all folds.

Figure 12 depicts the ROCs of error-classifiers
trained and validated on movement segments recor-
ded during day 1 with Monkey N outside the tar-
get (a, solid lines) or inside the target (b, solid lines)
compared to ROCs for all movement segments, both
inside and outside the target (dashed lines). It is evid-
ent that classifiers trained and validated on segments
outside the target have better ROCs (larger TPRs for
same FPRs) than classifiers trained and validated on
all segments, or on segments inside the target.

Table 4 summarizes the average TPRs (for FPRs
below 5%), over two days with Monkey N and over
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Figure 11. Effects of online error correction. Performance metrics evaluated during brain control with error monitoring (blue,
OFF) and with error correction (red, ON) on two different days (day 1 and 2) performed by Monkey N. In each day, brain control
with error detection was preceded and proceeded by brain control with error monitoring only, in an ABA fashion. Top panels:
total time to target, TTT, which is the same for both finger-groups. Bottom panels: orbiting time (OT) for the MRS finger-group.
Mean values for each phase are indicated and are marked by black lines. Both TTT and MRS’ OT were shorter when error
correction was turned on, though only the effect on MRS’ OT was statistically significant.

Figure 12. Effect of the location of the virtual fingers, either outside or inside the target, on error-detection. The receiver
operating curves (ROCs) depict validation performance of different classifiers, trained and validated on balanced sets of labeled
segments outside the target (a, solid lines) inside the target (b, solid lines) or both (dashed lines), using five-fold cross validation.
The analysis was performed on data recorded fromMonkey N (day 1) during initial brain control and during brain control with
error monitoring, with the same number of training segments for all classifiers. Vertical dashed lines indicate the FPR= 5% limit.

both finger groups and movement types. Different
rows specify the location of training segments (all,
outside or inside the target) and different columns
specify the location of validation segments from
which the ROCs were computed. Independent of the
location of the training segments, TPRs are always
highest when the ROCs are computed from valida-
tion segments outside the target. Furthermore, TPRs

obtained by classifiers that were trained and validated
on segments outside the target are significantly lar-
ger thanTPRs obtained by classifiers that were trained
and validated on segments inside the target or on seg-
ments from both inside and outside the target (one
sided t-test, p< 10−14). Thus, detecting erroneous
movements outside the target is more accurate than
inside the target.
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Table 4. Average AUC (area under the curve) and average maximum TPR (true positive rate) for FPR (false positive rate) below 5% from
ROCs (receiver operating curves) of error classifiers trained and evaluated on balanced sets of labeled segments from different locations
with respect to the target (all includes both segments outside and inside the target). AUCs and TPRs are averaged over both days in
which brain control with error monitoring was conducted with Monkey N (day 1 and 2), finger groups, and movement types. For fair
comparison the same number of training segments were used for all classifiers.

Validation

All Outside the target Inside the target

TPR AUC TPR AUC TPR AUC

All 37.1 0.86 51.7 0.89 31.3 0.83
Training Outside the target 34.4 0.85 58.1 0.92 28.6 0.8

Inside the target 35.7 0.85 40.3 0.85 33.8 0.84

4. Discussion

In this work we demonstrate that erroneous move-
ments can be detected from neural activity recorded
in the primarymotor cortex, within a time frame that
may enable them to be used to improve online BMI
performance. The ability to detect erroneous move-
ments was demonstrated offline on two monkeys,
but only one monkey (Monkey N) was available for
online error monitoring and error correction. Online
experiments with Monkey N were replicated on two
days to make sure that the monkey did not adopt an
unusual strategy on the first day. Indeed, the reported
improvement in performance was significant on both
of those days.

First we show that including distance to target,
rather than just kinematics, can explain significantly
more variance in the neural activity recorded in the
primary motor cortex, suggesting that neural activity
in motor cortex not only encodes position and velo-
city but also distance to the target. The percent vari-
ance explained by the distance peaks when the neural
activity lags the distance by about 200–250ms (4–
5 bins), while the percent variance explained by the
velocity peaks at a lag of 0–50ms. The lag between the
neural activity and the distance agrees with the inter-
pretation that the neural activity is partially related to
processing the observed distance to the target. Thus,
the neural activity encodes not only the position and
velocity but also the distance to the target. This sug-
gests that the neural activity across multiple bins
include information about whether the finger moves
away or toward the target, as the distance to the target
would increase or decrease, respectively.

Motivated by these results and insights we used
N = 4 bins of neural activity (200ms), from all the
units used for the BMI, to detect erroneous move-
ments. Error detection was applied only to segments
of N = 4 bins in which the movement type was con-
sistent (either flexion or extension). We note that
selecting a larger number of binsmight have provided
more information, but would have also reduced the
number of segments with consistent movement type.

Selecting thresholds that limit FPRs to below 5%, this
strategy resulted in an average offline TPR of 28.2%
for Monkey N and 19.2% for Monkey W. Using the
same thresholds online resulted in an average online
TPR of 28.1% for Monkey N. Note that the aver-
age online FPR remained below 5% even-though the
thresholds were selected offline. However, in gen-
eral, online FPRs cannot be guaranteed to remain
below 5%. Nevertheless, in real-life human applica-
tions, both error detectors and KF decoders could be
re-calibrated via a new training session with known
targets if performance was observed to degrade by the
user.

The demonstrated ability to detect erroneous
movements might be related, as suggested above, to
neural encoding of the distance to the target, but may
also be related to direct error processing in the motor
cortex. This is consistent with an fMRI study [16]
that revealed that execution errors activated clusters
in M1. It has also been shown that BMI outcome
errors can be detected from neural activity in the
motor cortex [4]. In that work, errors were detected
at the end of the trial, when the cursor was close to the
wrong target. Instead, here we demonstrate that it is
possible to detect execution errors during continuous
movements.

Interestingly, we demonstrate that error-detectors
trained and applied to erroneous movements out-
side the target have better validation performance
than error-classifiers trained and applied to erro-
neous movements inside the target (sub-section 3.4).
This suggests that erroneous movements outside that
target evoke more distinguished patterns of error
processing.

To overcome erroneous movements we applied a
simple stopping strategy: the movement was stopped
forN = 4 bins and correction was paused for an addi-
tional 2N= 8 bins. Despite an average online TPR of
28.1% and average online FPR close to 5% and despite
requiring 200 ms to detect and react to a suspected
error, we saw a significant improvement in task per-
formance via reduced OT of the MRS finger-group.
The significant reduction in MRS’ OT resulted in a
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reduction in TTT though it was not statistically sig-
nificant. We note that other measures of performance
that rely on the decoded velocity are less relevant for
assessing online performance since the ground truth
is unknown. In any case, additional study is needed
to determine the best correction strategy, considering
for example, slowing down, reversing the movement,
or stopping and pausing for different number of bins.

The detection of erroneousmovements fromEEG
activity evoked in response to errors, known as ErrPs,
is more mature [6–11]. ErrPs are a special type of
event related potentials (ERP), i.e. potentials that are
time locked to discrete events. In the case of ErrPs,
those events are the occurrence of errors. Thus, by
nature, ErrPs detect discrete erroneous events, like
selecting the wrong character [12, 13] moving in the
wrong direction [14, 15], or reaching the wrong tar-
get. Instead, in this work we used continuous neural
activity to detect erroneous movements away from
the target.

Other groups have attempted to augment a con-
tinuous BMI decoder with a classifier running in
parallel to determine when and how to modify the
decoder’s output. For example Sachs et al showed that
switching between fast and slowmodes with different
KF parameters significantly improves performance
[32]. It has also been shown that explicitly decod-
ing a stop state substantially reduces orbiting time, as
shown in Kao et al [33]. Here we achieve a perform-
ance improvement with a different approach, detect-
ing movements away from the target directly. While
error-detection inside the target may function as a
stop-recommender, the comparison analysis in sub-
section 3.4 indicates that error detection performs
especially well when restricted to erroneous move-
ments outside the target. Thus, there may be a greater
potential for improvement when considering both
interpretations, since there is likely representation of
both detected errors and ‘desired stopping’ within
motor cortex.

Kao et al [33] demonstrated the power of decod-
ing both analog and discrete state variables. Discrete
states were decoded using a hidden Markov model.
Depending on the Monkey, they distinguished
between either move and stop states or slow, fast, and
idle states. Thus, it is also interesting to investigate the
ability to distinguish between in-target and outside-
the-target states from the same neural activity used
for the KF decoder. The resulting ROCs, depicted in
appendix B, indicate that limiting the FPR to 5%,
results in TPRs of 40%–57% for Monkey N (depend-
ing on the finger group and movement type) and
around 30% for Monkey W. Future work may eval-
uate how ‘in target’ detection improves error cor-
rection. In particular, the movement can be stopped
when the ‘in target’ detector detects that the finger
is inside the target, independent of the output of the
error-detector. However, while the neural activity

that enables error-detection is assumed to be related
tomoving away from the target, and hence to be inde-
pendent of the characteristics of the target, the neural
activity that enables ‘in target’ detection may depend
on the characteristics of the target. Thus, it is left for
future research to assess how well ‘in target’ detection
will generalize to situations with different targets.

We chose the motor cortex because of the loca-
tion of existing implants in our NHP. However, bet-
ter error related signals could be found in other brain
areas such as the anterior cingulate cortex (ACC)
and the basal ganglia [34]. While there are challenges
with implanting areas such as ACC or basal ganglia,
new electrode technologies may allow for this in the
future. Furthermore, error detection might be useful
not only for real time error correction but also to re-
training the KF, as has been suggested and developed
for EEG-based BMIs [35].

A long term goal for BMIs would be to engage
the natural pathways in the brain for quickly adapt-
ing to motor errors. For example, the cerebellum is
thought to provide a rapid prediction of the out-
come and expected feedback from actively execut-
ing motor commands as shown by Therrien et al
[36]. This is helpful in generating active motor cor-
rections online [37]. With more electrodes recording
from throughout the motor pathway in the brain, the
amount of time required to detect an error may be
much lower than the 200ms used here. Bypassing the
time required by the spinal cord and muscles to act,
it is possible that one day BMIs could provide more
seamless integration with assistive technology than is
possible using control signals from muscles or move-
ments directly.
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Appendix A. Comparison of percent
variance explained by different variables

For completeness, we also compared the percent vari-
ance explained by the different kinematic variables
at three intervals of [−50,50]ms around the time at
which the percent variance explained by each indi-
vidual variable peaks (left panel of figure 6), table A1

summarizes the p-value of one-tailedWilcoxon rank-
sum test of the null hypothesis that the variance

explained by the variable in the first column (X1) is
smaller or equal to the variance explained by the vari-
able in the second column (X2) at the indicated inter-
val. Since there are 12 comparisons (3 for each mon-
key), a conservative threshold for significance, after
Bonferroni correction, is 0.004. The results indicate
that the percent variance explained by the distance
around its peak is significantly larger than the percent
variance explained by the other variables. This also
holds for the percent variance explained by the posi-
tion, but not for the percent variance explained by the
velocity. In particular, the percent variance explained
by the velocity, around its peak at 0ms, is not signi-
ficantly larger than that explained by distance, at least
for monkey W.

Appendix B. ‘In target’ detection

Motivated byKao et al [33], we also evaluated the abil-
ity to detect when the virtual fingers are inside the tar-
get from the recorded neural activity used by the KF.
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Table A1. Significance analysis comparing the variance explained by different pairs of kinematics variables at different intervals.
Wilcoxon rank-sum test was used to evaluate the null hypothesis that the variance explained by the variable in the first column (X1) is
smaller or equal to the variance explained by the variable in the second column (X2) at the indicated interval. The tests were conducted
using data recorded during finger control sessions in both days 1 and 2 performed by Monkey N or Monkey W.

Variance explained by X1 Vs. variance explained by X2 at indicated interval

Monkey N Monkey W

X1 X2 Interval p-value Interval p-value

D V [−250,−150] <0.0001 [−300,−200] <0.0001
D P [−250,−150] <0.0001 [−300,−200] 0.00055
V D [−50,50] 0.0007 [−50,50] 0.085
V P [−50,50] 0.022 [−50,50] <0.0001
P D [250,350] <0.0001 [400,500] <0.0001
P V [250,350] <0.0001 [400,500] <0.0001

Figure B1. ROCs of ‘in target’ detectors trained on data recorded during initial brain control. TPR is the percent of cases when the
fingers are inside the target and the detector correctly labels as inside, and FPRs are the percent of cases when the fingers are
outside the target, and the detector mistakenly labels as inside. Vertical dashed lines mark the FPR= 5% threshold. (a) Monkey
N, day 1. (b) Monkey W, day 2.

Four detectors were trained depending on the finger-
group and the type of movement (flexion or exten-
sion), based on data recorded during initial brain
control. Positive responses indicate that the finger-
group is inside the target. The resulting ROCs are
depicted in figure B1. Restricting FPR to below 5%
results in TPRs between 40% and 57% for Monkey N
and TPRs around 30% for Monkey W.
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