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Abstract

Brain-machine interfaces (BMIs) can restore motor function to people with paral-
ysis but are currently limited by the accuracy of real-time decoding algorithms.
Recurrent neural networks (RNNs) using modern training techniques have shown
promise in accurately predicting movements from neural signals but have yet to
be rigorously evaluated against other decoding algorithms in a closed-loop set-
ting. Here we compared RNNs to other neural network architectures in real-time,
continuous decoding of finger movements using intracortical signals from nonhu-
man primates. Across one and two finger online tasks, LSTMs (a type of RNN)
outperformed convolutional and transformer-based neural networks, averaging
18% higher throughput than the convolution network. On simplified tasks with
a reduced movement set, RNN decoders were allowed to memorize movement
patterns and matched able-bodied control. Performance gradually dropped as the
number of distinct movements increased but did not go below fully continuous
decoder performance. Finally, in a two-finger task where one degree-of-freedom
had poor input signals, we recovered functional control using RNNs trained to
act both like a movement classifier and continuous decoder. Our results suggest
that RNNs can enable functional real-time BMI control by learning and generating
accurate movement patterns.

1 Introduction

Brain-machine interfaces (BMIs) have the potential to restore motor function to people with paralysis.
While intracortical motor BMIs have successfully enabled paralyzed human patients to control
computer cursors [1], robotic arms [2], or even move their own muscles through functional electrical
stimulation [3], the decoding algorithm that predicts intended movement from neural signals still
lacks accurate and naturalistic movement outputs. Recently, non-linear decoding algorithms using
artificial neural networks have demonstrated higher offline kinematic prediction accuracy compared to
linear approaches, which could enable more functional BMIs. Glaser et al. 2020 found that recurrent
neural networks (RNNs), specifically the long short-term memory (LSTM, [4]) and gated-recurrent
unit (GRU, [5]), outperformed other decoding architectures for predicting movement in several brain
regions [6]. Other neural networks have improved decoding accuracy by de-noising neural signals
using RNNs (LFADS, [7]) or transformers [8]. However, offline accuracy does not necessarily predict
real-time closed-loop (online) performance [9, 10], where errors are cumulative and the user can
adjust neural activity based on feedback. With goals of improving function of real-time BMIs, it is
unclear if the high offline accuracy of RNNs translates to the online setting.

In online prediction settings, BMIs using RNNs for continuous movement prediction have demon-
strated limited success but have not been evaluated against other neural network architectures. Sussillo
et al. 2016 showed that an online RNN was more robust to electrode perturbations and slightly
outperformed a linear Kalman filter in a reaching task [11]. In a closed-loop simulation, Hosman et
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al. 2019 found that an LSTM decoder could outperform a Kalman filter in a cursor-control task [12].
Recently, Deo et al. 2023 found that RNNs tested with a human subject tended to significantly overfit
to offline data and required novel dataset regularization for functional online use [10]. Alternatively,
our group found that an ReFIT convolutional feedforward network outperformed a ReFIT Kalman
filter in an online two finger group task by accurately predicting a large dynamic range of velocities
[13]. Thus, there is a need to evaluate the online performance of RNNs against other high performing
neural networks where all decoders have the possibility of overfitting to training data.

In addition to high prediction accuracy, RNNs have the capacity to memorize and generate realistic
sequences with minimal input [14, 15, 16]. In the BMI context, an RNN decoder could memorize
discrete postures and stereotyped movements between postures, and could help generate movement
for degrees-of-freedom (DoFs) where little information is contained in the input (for example, if few
cortical channels are tuned to one movement direction). RNNs have previously been used to generate
smooth, multi-DoF limb movements [17, 14, 18], and other work has shown that RNNs can learn
hundreds of separate simple tasks [19, 16]. However, it is unclear if a memorized RNN is controllable
in a closed-loop setting where overfit decoders may easily fail [10].

Here, we evaluate the online closed-loop performance of RNNs against other neural network archi-
tectures in non-human primates performing a multi-DoF finger task. We find that offline accuracy
generally predicts the relative ordering of online decoder performance, with LSTMs outperforming
other architectures. Then, we show how reducing task complexity and allowing memorization of
movements can enable the BMI to reach able-bodied performance, with a gradual transition between
discrete and fully continuous movement outputs. We provide an example of using selective movement
memorization to recover performance despite having poor neural inputs for a particular DoF. Finally,
we find that RNNs trained to memorize a small set of movements still rely on user inputs and have
some limited capacity to generalize when controlling velocity rather than position.

2 Methods

2.1 Microelectrode Array Implants

We implanted two male rhesus macaques (Monkeys N and W) with Utah microelectrode arrays
(Blackrock Neurotech) in the motor cortex using the arcuate sulcus as an anatomic landmark for
hand area, as described previously [20, 21]. In each animal, a subset of the 96 channels in M1,
with threshold crossings morphologically consistent with action potentials, were used for offline
recordings and closed-loop BMI control. Surgical procedures were performed in compliance with
NIH guidelines as well as our institution’s Institutional Animal Care & Use Committee and Unit for
Laboratory Animal Medicine.

2.2 Signal Processing and Feature Extraction

We recorded 96-channel Utah array data using a Cerebus neural signal processor (Blackrock Neu-
rotech). The Cerebus sampled data at 30 kHz, applied a 300-1000 Hz bandpass filter and downsampled
to 2 kHz before streaming the data to a computer running xPC Target version 2012b (Mathworks),
which calculated spiking band power (SBP) by taking the magnitude of the signal and summing into
32 ms bins. We used SBP since it is highly correlated with neural firing rate and a high-performance
BMI input feature [22]. During online experiments with neural network decoders, the binned SBP of
each channel was normalized to have zero mean and unit variance, based on the mean/variance of
initial training trials.

2.3 Behavioral Task for Finger Movement Decoding

We trained monkeys N and W to acquire virtual targets with virtual fingers shown on a computer
screen in front of the animal (Figure 1a). In hand control (“offline” trials), monkeys moved their
fingers within a manipulandum that measured the angles of the index and middle-ring-small (MRS)
finger groups using bend sensors, and controlled the virtual fingers (Figure 1b). During brain control
(also known as closed-loop, “online” trials), monkeys controlled the virtual fingers using neural
signals and a decoder. The finger task required placing the virtual index finger and MRS fingers on
the respective targets and holding for 750 ms during offline trials or 500 ms during online testing.
The target size was 15% of the active range of motion. The total number of possible target locations
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Figure 1: BMI for decoding finger movement. (a) Experimental setup. During hand-control trials
the monkey used a finger manipulandum to control a virtual hand and acquire targets, with visual
feedback from the screen. Spiking-band power (SBP) was calculated in real-time from 96-channel
Utah microelectrode arrays. During brain control, the decoded finger positions controlled the virtual
hand. (b) Example movements for the 2-DoF task involving flexion and extension of the index finger
and MRS fingers. In a random target task, the target is randomly chosen between extension and
flexion for each DoF. (c) SBP was averaged into 32 ms bins and fed into an RNN (GRU or LSTM)
decoder which predicted position and velocity for one or two finger groups. Other decoders not
depicted here were also tested. (d) Example true and predicted positions and velocities from an
LSTM decoder for Monkey N performing a 2-DoF random target task. The LSTM is able to predict
both slow and fast velocities.

varied based on the task, ranging from 2 targets up to fully random (any position could be chosen),
with 1-DoF (just index finger) or 2-DoF (index and MRS fingers). Target locations were randomly
chosen at the start of each trial. We collected 500 offline trials for decoder training (although only
300 were collected for offline memorization, Figure 3a). We note that Monkey N typically continued
to move his hand even during brain control mode. In this work we only used offline historical data
from Monkey W who did not perform online control.

2.4 Simulated Datasets

For some analyses we created simulated offline datasets of a virtual user performing the same target
acquisition task. The goal of these simulations was to test the relative impact of amount of training
data, number of DoFs, and number of inputs on decoder performance, rather than measuring absolute
performance. The simulated user moved with a velocity proportional to the distance to the target along
each DoF. Artificial neural channels were generated such that each channel had a random relationship
with the position, velocity, and acceleration at each timestep, as suggested in [23]. Further details and
specifics can be found in Supplementary Methods.

2.5 Performance Metrics

Offline performance was measured by the Pearson correlation and mean-squared error (MSE) between
predicted and true finger position and velocity. Offline velocities and positions were normalized to
have unit standard deviation and zero mean (normalized using training data). We also calculated
the mean-absolute error (MAE) between velocity predictions and the true velocity. To do so, true
velocities were binned into 21 bins between -3 to 3 standard deviations, and the mean-absolute error
was calculated for the predictions of each bin, where data across days were grouped together.
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Online performance was measured using two sets of metrics: time and information throughput. Time
metrics included the trial-time (the time for a trial with hold time subtracted), move-time (the time
until all fingers touch the target for the first time), and orbiting time (trial-time minus move-time,
representing extraneous movements where fingers left the target). Information throughput, measured
in bits per second (bitrate), has previously been used to measure finger task performance [13] and
was calculated using Fitt’s law which accounts for both task difficulty and completion time:

throughput =

∑
k log2

(
1 +

Dk−R
2

R

)
tacq

(1)

where Dk is the distance of the kth virtual finger to the center of the kth target, R is the target radius,
and tacq is time to reach the target. Better decoders (fast and precise) have a higher throughput.
Before calculating throughput, we removed initial trials from the performance calculation to account
for the decoder learning period before steady state performance, which took approximately 1-2
minutes. When more than 100 trials were performed we removed the first 50 trials, and when fewer
than 100 trials were performed (typically when the performance was poor and the monkey was unable
to complete many trials) we removed the first 20 trials.

2.6 Decoders

We tested five decoder architectures, chosen for their high offline or online decoding performance in
other studies. Decoders took in binned SBP features (neural features) from up to 96 channels with
1-5 bins of time history for each channel and were trained to predict the position and velocity of 1
or 2 finger groups (Figure 1c). The neural network decoders were implemented and trained using
PyTorch 1.12.1. Each decoder is detailed below; see Supplemental Figure 1 for more details on each
network architecture. The total number of neural network decoder parameters varied from 479k for
the LSTM to 923k for the TFM (see supplemental results).

Recurrent Neural Network (RNN) We tested two variants of RNNs: the LSTM [4] and GRU
[5], which have previously shown high performance in offline neural decoding [6]. Decoders were
implemented using the torch.nn.LSTM and torch.nn.GRU classes. As shown in Figure 1c, the RNN
decoder takes in the current time bin of SBP features and the previous hidden state, updates the hidden
state, and predicts position and velocities as a linear function of the hidden state. During training, a
sequence length of 20 and zero-initialization for the hidden state were used for each sample. The final
output of each sample sequence was used to compute the loss. During online decoding, the hidden
state was stored in memory, such that the inputs at each timestep were the current neural bin and the
previous hidden state.

Convolutional Feedforward Neural Network (FNN) We tested the FNN described in Willsey
et al. 2022 [13], which previously outperformed a ReFIT Kalman Filter [24, 21] in online testing.
The network uses an initial convolutional layer over time (for each channel) followed by several
feedforward layers that use batch normalization, dropout, and ReLU. The network used bins of time
history per channel (160 ms). Implementation details are described in [13] and Supplemental Figure
1, and hyperparameters were optimized as described below. Notably, we did not perform ReFIT
recalibration as was done in [13].

Transformer (TFM) Transformers [25] have recently become popular for sequence processing
tasks and have performed well in offline neural decoding (Ye 2021). The transformer tested here used
a cosine positional encoding layer [25] followed by multi-head attention and feedforward layers, and
a final linear layer to output kinematic predictions (see Supplemental Figure 1). The transformer
layers were implemented using the torch.nn.TransformerEncoderLayer. The transformer used five
bins of time history per channel (160 ms). We note that unlike the transformer in Ye et al. 2021 [8]
which was trained to predict smoothed firing rates, the transformer here was directly trained to predict
kinematics.

Kalman Filter (KF) The kinematic Kalman Filter (KF) is a linear decoder widely used in BMI that
optimally combines a state transition model (using the current position and velocity as a state) with an
observation model (that relates the kinematics to neural activity) to estimate the current position and
velocity. Like the other decoders, the KF takes in the current bin of neural features and the previous
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state, and then outputs predicted finger velocities. The KF was implemented and trained as described
in [20, 26] using the NumPy library, but here we did not use ReFIT recalibration.

2.7 Neural Network Decoder Training

For offline decoders, datasets were split into 70% for training, 10% validation, and 20% testing. For
online decoders, datasets were split into 80% training (400 trials) and 20% validation (100 trials) since
a test set was unnecessary. Neural features and finger positions/velocities were normalized based on
the training set to have zero mean and unit variance. We first performed hyperparameter optimization
for each decoder using two offline datasets for each monkey individually. Bayesian optimization was
performed using the Optuna library, and decoder performance was generally robust to the specific
choice of hyperparameters. See Supplemental Methods for details and Supplemental Table 1 for
parameter values used. Decoders were trained using minibatch gradient descent with the PyTorch
Adam optimizer. The loss function was the mean-squared error (MSE) loss with an additional term to
penalize finger co-dependence (see Supplemental Methods; the additional term was only used for
online decoders). The learning rate was held constant until validation loss plateaued, then halved and
held constant until validation loss plateaued a second time (using the ReduceLROnPlateau scheduler).
After training was complete, a linear regression was calculated to transform the normalized outputs
back to the initial position and velocity scale. Training took less than 5 minutes for each network.

2.8 Online Decoder Testing

During online experiments, decoders were run in Python 3.7 using a dedicated linux computer with an
RTX 2070 Super GPU (NVIDIA). After receiving binned neural features from the xPC, the decoder
calculated position and velocity predictions, and a final position for each finger was sent back to the
xPC to update the virtual hand (see [13] for more details). For the RNN decoders, we found that
combining velocity and position predictions to generate the final displayed positions (98% integrated
velocity, 2% position) was necessary to prevent the virtual fingers from becoming biased (similar
to that of [27, 11]), and we used this for all neural network decoders. For tasks with less than 9
targets we increased the positional contribution up to 50%. During online comparisons, decoders
were alternated in an A-B-A or A-B-A-B format, with performance averaged across sets. For the
2D decoder comparison with all 5 decoders, each decoder was only tested once (A-B) due to time.
An online decoder test was stopped if the monkey was unable to acquire targets for more than 30
seconds or the monkey stopped attempting to acquire targets.

2.9 Training Optimizations

To optimize online performance, in early exploration we tested several machine learning techniques
for improving accuracy and generalization (detailed in Supplemental Methods). When the initial
online trial success rate was 90% or less, we found the following techniques improved individuated
finger control and success rate (SR): modifying the loss function to encourage finger independence
(11% increase in SR, 12% improvement in trial time), training on more single-finger movements
(38% increase in SR, 27% improvement in trial time), and training on trials with added positional
perturbations (11% increase in SR, 12% improvement in trial time). Adding a small amount of noise
to the neural data during training (as suggested in [28]) improved average trial times by 6%. Finally,
we found that training on more data improved offline accuracy (up through 2000 trials), but with only
a small improvement after 500 trials. For online results detailed below, decoders used the modified
loss function, additional single-finger movements, and added noise.

3 Results

3.1 High Performance finger BMI with RNNs

Offline Decoder Comparison Previous work has shown that RNN decoders, specifically LSTMs
and GRUs, can outperform other feedforward neural networks for predicting offline reaching move-
ments from intracortical signals [6]. Here, we began by establishing a baseline for how well RNN
decoders can decode dexterous finger movements, compared to other neural network architectures.
One adult male rhesus macaque, Monkey N, was implanted with Utah arrays in the hand area of the

5



Figure 2: Offline and online decoder performance comparison. (a) Offline model performance
measured by MSE (a.u) between predicted and actual movements. Values represent the average of ten
models trained on ten separate days of the 2-DoF random task. (b) Mean absolute error of velocity
predictions where the x-axis is the true velocity and the y-axis is the error in predicted velocity (lower
is better). Units are normalized velocity and data is averaged across ten days. (c) Offline correlation
between true and predicted movements for simulated datasets with varied channel count. As channel
count increases, the difference in accuracy across decoders becomes smaller. (d) A representative
online decode trace of Monkey N using an LSTM for a 2-DoF random target task. The fingers quickly
move to the target and can hold with minimal overshoot. Boxes represent the target position for
each finger and lines represent the finger positions. (e, f) Online model performance on exemplar
days where all decoders were tested in the same day for 1-DoF (e) and 2-Dof (f) random tasks.
Performance is measured by bitrate (higher is better). “Hand” is the performance during physical
hand control (able-bodied performance). Across all figures, error bars denote one standard error of
the mean (SEM), and data for a,b,d-f come from Monkey N.

primary motor cortex, and simultaneous neural activity and finger movements were recorded. For a
continuous, random target task we compared the following decoders across ten days: LSTM, GRU,
FNN, TFM, and KF. An example offline prediction on a representative day using an LSTM is shown
in Figure 1d, where the predicted positions and velocities closely match the true finger movements,
notably reaching both fast and slow velocities. To evaluate decoder accuracy, we calculated the
MSE and correlation between predicted and true finger velocities and positions. As in Figure 2a, for
Monkey N, LSTM decoders had the lowest positional and velocity error across all decoders and also
the highest correlations of 0.86 and 0.77 for position and velocity respectively. The LSTM had a
significant improvement in position and velocity MSE over all decoders (p<0.001 for all comparisons,
one-sided paired t-test). All neural network decoders had significantly lower position and velocity
MSE than the KF (p<1e-5 for all comparisons, one-sided paired t-test). The same relative ordering
of decoder was found when the analysis was performed on historical data from a second monkey
(Supplemental Figure 2), albeit with slightly higher errors overall.

To further reveal the difference in decoder accuracy with Monkey N, we calculated the mean-absolute
error (MAE) for each ground-truth velocity (Figure 2b). All neural network decoders had similar low
error at slow velocities; however, RNNs had significantly lower error for the fastest 10% of velocities
than other neural networks (p<1e-5, one-sided t-test), suggesting they may enable faster real-time
movements while maintaining slow-movement accuracy. Thus, RNNs more accurately predict offline
finger movements than other architectures, agreeing with previous literature [6].

Online Decoder Comparison Since real-time, closed-loop control requires the user to actively
react to and correct errors, the online and offline distributions of neural activity and movements may
differ, preventing a high performing offline decoder from functioning well online. Therefore, we
next compared decoders in a closed-loop setting, where only the monkey’s neural activity (rather
than his hand) controlled the virtual hand movement. To evaluate online performance, we compared
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decoders within multiple sessions with Monkey N, and measured performance using information
throughput (bitrate). Decoders were trained using only same-day data. Figure 2d shows example
online movements using a 2-DoF LSTM, where the monkey quickly moved each finger group and
then held at the target position, for a median time of 1.3 sec per trial. The LSTM tended to overshoot
index-flexion targets, which Monkey N also tended to do during hand-control. On all tests, the LSTM
decoder matched or had the highest information throughput, with a median bitrate 15% higher than
the GRU across 2 comparison days, and 18% higher than the FNN across 3 days. Supplemental Video
1 shows example usage of each decoder.

We next tested if online decoder performance follows the same ordering as offline accuracy. Figure
2e/f shows online performance on two exemplar days where all five decoders were tested in a 1-DoF
and 2-DoF task with Monkey N, where performance followed the same ordering as offline accuracy
for both comparisons (except for the TFM outperforming the FNN on the 1-DoF task). Interestingly,
the FNN had only slightly lower online 2-DoF bitrate compared to the RNN decoders despite
significantly lower offline position and velocity correlations. This suggests that offline performance
on the same dataset may give a general idea about online performance ordering but does not indicate
the specific performance differences during closed-loop control.

High Channel-Count, Simulated Decoder Comparison With the recent developments of higher
channel count recording systems [29, 30], BMIs may soon have access to more input channels. To
determine if recurrent architectures may be more accurate than feedforward architectures at higher
channel counts, we trained decoders on simulated datasets with a varied number of artificial neural
channels. As seen in Figure 2c, for 10-100 channels, the LSTM and GRU decoders have significantly
higher offline correlation compared to FNN, TFM, and KF decoders (average LSTM correlation 0.1
higher than TFM). However, at higher channel counts the advantage of the LSTM and GRU shrinks,
such that the difference in correlation at 400 channels is only 0.01 between LSTM and TFM. While
actual neural data may differ from the simulated datasets used here, these results suggest that the
choice of a specific nonlinear decoder may be less important at high channel counts.

3.2 Able-bodied performance by memorizing movements

As opposed to the fully randomized target postures in the previous section, we next investigated RNN
decoder performance on more simple, stereotyped tasks with a limited set of targets. RNNs have the
ability to memorize and reproduce learned patterns [14]; here, we aimed to let the RNN memorize
movement patterns for a discrete set of targets, potentially allowing for more accurate decoding
despite the potential for reduced generalization on a wider range of tasks. To test the capacity for
RNNs to memorize targets, we trained and tested LSTM decoders on discrete target datasets, ranging
from 2 targets (1D) up to 23 targets (2D). We note that the target order was randomized, which
required the decoder to rely on neural input. Separate decoders were trained for each number of
targets. We found that LSTM decoders could memorize the specific positions and movements between
targets and that offline error increased as the number of targets increased (Figure 3a). Intuitively, this
makes sense because as more targets are added, there are fewer example movements per target when
keeping the number of trials constant. In additional simulations, we found that as more targets are
added, more inputs or training data are needed to maintain accuracy (Supplemental Figure 3). While
offline error was highest for random targets, this maximum value corresponds to relatively accurate
predictions (as shown in the previous section).

We found a similar trend when testing decoders online with simple tasks (Figure 3b). For tasks
with 2 to 4 targets, monkey N using an LSTM decoder achieved 2% higher bitrates than able-bodied
manipulandum control on average (see Supplemental Video 2), where the performance improvement
was due to a reduced orbiting time (in the 2-target case on average, brain control had a 20 ms
slower move time but a 96 ms faster orbiting time). Move time is the time to reach the target
and orbit time is time for extraneous movements after reaching the target (see Methods). As the
number of targets increased, brain-control move times stayed approximately the same while orbiting
time increased (Figure 3c). This suggests that with fewer targets, the RNN learns stronger internal
dynamics to minimize extraneous movement. Overall, as more targets are added, thus decreasing
offline performance, online performance drops down to approximately random-target performance.
Therefore, by changing the training dataset the RNN decoder can smoothly transition between
memorization with strong dynamics (similar to a classifier) and generalization with weaker dynamics.
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Figure 3: LSTM decoders have increased performance on simple tasks. (a) Offline MSE (a.u.) for
LSTMs trained on tasks with varied numbers of targets and 1-2 DoFs, where all tasks were performed
on the same day. “2D random small” refers to random targets with 25% smaller size, requiring finer
control. (b) Online performance for varied numbers of targets and DoFs across multiple sessions,
with performance measured relative to able-bodied control (calculated as online-bitrate / hand-bitrate).
Lines indicate tests performed within the same day. (c) Average move and orbiting times for hand
control (gray bars) and brain control (blue bars) for 1-DoF tasks on an exemplar day. Orbiting times
tend to increase with task complexity. Note that the 500 ms hold time is not depicted.

3.3 Recovering performance through memorization

In some cases, information on a particular DoF is limited (for example if a BMI has too few channels
tuned to that DoF or movement) making the overall BMI unusable. To recover functional use, we
hypothesized that the poor DoF could rely on memorization of a discrete movement set (for greater
accuracy) while the other good DoF(s) maintain fully continuous movements. For example, Figure 4
shows the first three principal components of the hidden state of a 2-DoF GRU trained on two targets
for index finger and random targets for MRS fingers (simulated data, see Supplemental Methods). In
this setting, one DoF acts like a movement classifier jumping between line attractors, while the other
DoF is continuous with positions continuously represented along each line attractor.

We tested this strategy with Monkey N, who, over a period of 6 months, had a reduction in control
of the index finger (likely due to a reduction of neural channels tuned to index finger). When using
an LSTM trained on a 2 finger group (2-DoF) random task, index finger had poor online control,
resulting in a success rate of 66% (average bitrate 1.14, 112 trials). To recover performance, on the
same day, we trained an LSTM on a modified task with only three targets for index finger (extend,
center, flex) while maintaining random targets for MRS fingers. By reducing the number of distinct
index finger movements, the number of training examples per movement is increased, allowing the
RNN to learn more accurate movement dynamics. The LSTM trained on the modified task had
substantially higher online performance (success rate of 98%, average bitrate of 4.18, 262 trials)
and the finger groups were visibly more independent (see Supplemental Video 3). Thus, for BMI
or prosthetics users with poor input quality or limited data, functional online performance may be
recovered by modifying the decoder training dataset without necessarily tuning hyperparameters or
parameters of the decoder itself.

3.4 Memorized RNNs partially generalize to continuous tasks

For RNNs trained to memorize simple postures, it is unclear how well these decoders can generalize
to other tasks. One might expect that, when trained to output a discrete set of positions, the RNN
may learn strong fixed points (or other dynamics) that enable the RNN to accurately output discrete
positions, but may perform poorly when tasked with holding intermediate postures (random targets).
To test this assumption and the ability of memorized RNNs to generalize, we trained LSTMs on tasks
with a limited number of targets and tested the decoders on online random target tasks. We tested the
generalization ability of positional (50% position, 50% integrated velocity) and velocity (1% position,
99% integrated velocity) variants of the same decoder (Supplemental Figure 4).

LSTM decoders trained on 1-DoF 2- and 3-target tasks had 100% and 98% online success rate (SR)
respectively when tested on the same simple tasks (positional variant). When tested on the random
target task, as expected, the positional decoders had difficulty stopping on targets that did not overlap
with the learned targets, and failed to move outside of the learned flexion-extension range. The
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Figure 4: Hidden states of a memorized RNN. (a) A GRU RNN was trained on a modified task
with random targets for MRS fingers but only 2 targets for index finger (simulated data). (b, c) Plots
depict the first three principal components of the RNN hidden state, with traces indicating the path
over time. (b) and (c) plot the same data, just with different coloring. When the path is colored by the
predicted index position (b), it is clear each line attractor corresponds to an index target. As in (c),
the position along each line attractor corresponds to the predicted MRS position. Thus, the RNN can
learn different dynamical structure for each DoF to act more like a classifier when beneficial.

2-target positional decoder was non-usable (SR < 50%), while the 3-target positional decoder was
more functional (SR 87%, bitrate 1.05). Interestingly, the velocity decoder variants were better able to
generalize, where the 2-target velocity decoder had a 98% SR (bitrate 1.33) and the 3-target velocity
decoder had an 80% SR (bitrate 0.93, lower performance likely due to low monkey motivation).
While functional, the velocity variants had more difficulty making small corrective movements and
had lower bitrates compared to random-trained decoders (bitrate 2.19). These results suggest that
memorized RNNs can generalize to some degree, where training on more targets leads to better
positional generalization.

4 Discussion

A key component of BMIs that restore motor function is an accurate decoding algorithm that performs
well in online settings. Unfortunately, for continuous movement decoding, offline accuracy does not
incorporate closed-loop dynamics, meaning offline metrics may fail to predict online performance
[9] and offline cross validation does not fully reveal decoder overfitting [10]. However, here, using a
multi-DoF finger BMI, we found that offline accuracy generally predicted the relative online decoder
performance ordering. We found that recurrent neural networks, namely LSTMs, outperform other
neural network architectures in both offline and online settings. This high performance of RNNs
follows previous work showing that decoders that learn neural or kinematic state dynamics (including
RNNs) can more accurately predict kinematics from noisy neural data [31, 27, 6]. All the networks
tested here were relatively small (5 layers or fewer) and could be efficiently run in real time (typically
<2 ms per prediction), suggesting that very deep or complex architectures may not be necessary
for high performance. Additionally, we did not perform intention-based recalibration (ReFIT; as
described in [24, 13]) due to experimental trial count constraints. This could potentially benefit some
decoders more than others. Further work may also investigate the performance trade-offs of decoders
trained to de-noise neural data [7, 8] versus decoders directly trained to predict kinematics.

While the neural network decoders tested here were all highly usable with minimal apparent overfit-
ting, Deo et al. [10] found that RNNs tended to significantly overfit to offline data when tested in
humans. In humans with paralysis, decoding algorithms are trained from offline data by instructing
participants to attempt movements in sync with an artificially moving effector. With able-bodied users
(like the non-human primates used here), however, the direct relationship between neural activity
and true movement can be used for training. These able-bodied movements more broadly sample the
range of positions/velocities and neural activity needed to perform a task and often have errors like
overshooting. When trained on only two able-bodied targets, enough variation was present to allow
for generalization to other movements. These results suggest regularization of neural networks is
necessary for high performing BMIs, whether inherent to the training data or by applying artificial
data modifications.
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In additional testing we found that using more time history in the FNN and TFM decoders (up
to 20 bins/640 ms) resulted in poor online control (Supplemental Figure 5). This is likely due to
overfitting to training data that lacks many of the corrective movements present in online control,
and demonstrates how offline analyses can fail to predict the performance in the closed loop setting.
Interestingly, the RNNs were trained with longer history but did not display this overfitting. Future
work may investigate methods of using longer training sequences while limiting overfitting and lag,
for example by discouraging attention to early bins.

Decoder memorization of training data is commonly associated with overfitting, suggesting poor
closed-loop control. Here, we found that RNN decoders allowed to memorize a few movement
patterns were highly controllable online and matched able-bodied performance for tasks with 2-
4 target postures. With a reduced target set the RNN can learn stronger recurrent dynamics for
higher accuracy, acting somewhat like a pseudo-classifier between movements. As task complexity
(the number of targets and distinct movements) increases, offline and online decoder performance
degrades gracefully down to fully continuous performance, partly due to the reduced number of
training examples per movement. This is similar to neural word decoding, where word error rates
increase with larger vocabularies [32]. Unlike algorithms that manually combine a classifier and
continuous decoder [33, 34], RNNs are fully continuous yet can internally act as a classifier and
generator for movements that lack input information, while maintaining high performance continuous
output for other movements. As BMIs extend to more DoFs, our results suggest that more data
or neural channels will be needed to maintain accuracy, and the degree of memorization can be
controlled for each DoF independently. Future work may investigate the relative dependence on
inputs vs autonomous dynamics of RNNs, and their effect on online performance.

There are several limitations to the present study of closed-loop BMI performance. First, we did not
explore every possible decoder architecture. More optimal architectures likely exist, but here we
found several key factors of each class (for example, the need for limited time history of feedforward
models, and the ability of RNNs to strongly learn few movements). Future work may explore models
that combine recurrence with feedforward attention layers to take advantage of the benefits of each
(for example, [35]). Also, only one monkey was used for the online analyses; additional users may
have different control strategies or decoder errors.

Future BMI decoders could be designed to be more explicitly tunable to allow the user to adjust the
balance between memorization (with more reliance on internal dynamics) and generalization to a
wider range of movements. A decoder could act more like a classifier when producing stereotyped
movements such as sign language or functional grasps, but act as continuous controller when
producing arbitrary movement. Users at the onset of BMI use could use a simple task decoder that
works well with minimal training data (reducing cognitive fatigue and maintaining user motivation),
then transition to higher complexity as more data is acquired. These strategies could also be employed
for myoelectric and other prosthetic controllers which must function using noisy signals with large
uncertainty in user intentions. BMIs that can produce accurate kinematic predictions across the range
of few neural channels to thousands could speed the clinical translation of BMIs with current and
future hardware.
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